Домой / Online-сервисы / Устройство звуковой карты. Системы обработки и воспроизведения аудиоинформации звуковая система пк Принцип работы устройства для исследования звуковой системы ПК

Устройство звуковой карты. Системы обработки и воспроизведения аудиоинформации звуковая система пк Принцип работы устройства для исследования звуковой системы ПК

Звуковая система ПК – это комплекс программно-аппаратных средств, выполняющих следующие функции:

Конструктивно звуковая система ПК представляет собой звуковые карты, устанавливаемые в слот , либо интегрированные на материнскую плату или карту расширения другой подсистемы ПК.

Классическая звуковая система ПК содержит:

  • модуль записи и воспроизведения звука;
  • модуль синтезатора;
  • модуль интерфейсов;
  • модуль микшера;
  • акустическую систему.

Первые четыре модуля, как правило, устанавливают на звуковой карте. Каждый из модулей может быть выполнен в виде микросхемы, либо входить в состав многофункциональной микросхемы.

Диаграмма Звуковая система пк

Рисунок – Структура звуковой подсистемы ПК

  1. Модуль записи/воспроизведения осуществляет аналогово-цифровое и цифроаналоговое преобразования в режиме программной передачи звуковых данных по каналам DMA (Direct Memory Access – канал прямого доступа к памяти).
  2. Модуль синтезатора позволяет генерировать практически любые звуки, в том числе звучание реальных музыкальных инструментов.

Рисунок 2 – Схема современного синтезатора

Звук создаётся следующим образом. Цифровое устройство генерирует так называемый сигнал возбуждения с заданной высотой звука, который должен иметь спектральные характеристики, близкие к характеристикам имитируемого музыкального инструмента. Далее сигнал поступает на фильтр, имитирующий амплитудно-частотную характеристику этого инструмента. На другой вход подаётся сигнал амплитудной огибающей того же инструмента. Затем совокупность сигналов обрабатывается с целью получения специальных звуковых эффектов (эхо и др.). Затем производят цифроаналоговое преобразование и фильтрацию сигнала с помощью фильтра низких частот (ФНЧ).

Основные характеристики модуля синтезатора:

  • метод синтеза звука : на основе частотной модуляции, на основе таблиц волн, на основе физического модулирования;
  • объём памяти ;
  • возможность аппаратной обработки сигнала для создания звуковых эффектов;
  • полифония – максимальное число одновременно воспроизводимых элементов звука.
  1. Модуль интерфейсов обеспечивает обмен данными между звуковой системой и другими внешними и внутренними устройствами.
  1. Модуль микшера звуковой карты выполняет:
  • коммутацию (подключение/отключение) источников и приёмников звуковых сигналов, а также регулирование их уровня;
  • микширование нескольких звуковых сигналов и регулирование уровня результирующего сигнала.

Основные характеристики:

  • число микшируемых сигналов на канале воспроизведения;
  • регулирование уровня сигнала в каждом микшируемом канале;
  • регулирование уровня суммарного сигнала;
  • выходная мощность усилителя;
  • наличие разъёмов для подключения внешних и внутренних приёмников/источников звуковых сигналов.

Программное обеспечение управления микшером осуществляется либо средствами Windows, либо с помощью специального программного обеспечения.

  1. Акустическая система (АС ) непосредственно преобразует звуковой электрический сигнал в акустические колебания и является последним звеном звукопроизводящего тракта. В состав АС входят несколько звуковых колонок, каждая из которых может иметь один или несколько динамиков. Количество колонок в АС зависит от числа компонентов, составляющих звуковой сигнал и образующих отдельные звуковые каналы.

Звуковая система ПК - комплекс программно-аппаратных средств, выполняющих следующие функции: ■ запись звуковых сигналов, поступающих от внешних источников, например микрофона или магнитофона, путем преобразования входных аналоговых звуковых сигналов в цифровые и последующего сохранения на жестком диске; ■ воспроизведение записанных звуковых данных с помощью внешней акустической системы или головных телефонов (наушников); ■ воспроизведение звуковых компакт-дисков; ■ микширование (смешивание) при записи или воспроизведении сигналов от нескольких источников; ■ одновременная запись и воспроизведение звуковых сигналов (режим Full Duplex) ; ■ обработка звуковых сигналов: редактирование, объединение или разделение фрагментов сигнала, фильтрация, изменение его уровня; ■ обработка звукового сигнала в соответствии с алгоритмами объемного (трехмерного - 3D-Sound) звучания; ■ генерирование с помощью синтезатора звучания музыкальных инструментов, а также человеческой речи и других звуков; ■ управление работой внешних электронных музыкальных инструментов через специальный интерфейс MIDI.

Звуковая система ПК конструктивно представляет собой звуковые карты либо устанавливаемые в слот материнской платы, либо интегрированные на материнскую плату или карту расширения другой подсистемы ПК. Отдельные функциональные модули звуковой системы могут выполняться в виде дочерних плат, устанавливаемых в соответствующие разъемы звуковой карты.

МОДУЛЬ ЗАПИСИ И ВОСПРОИЗВЕДЕНИЯ Модуль записи и воспроизведения звуковой системы осуществляет аналого-цифровое и цифроаналоговое преобразования в режиме программной передачи звуковых данных или передачи их по каналам DMA (Direct Memory Access - канал прямого доступа к памяти). Если при записи звука пользуются микрофоном, который преобразует непрерывный во времени звуковой сигнал в непрерывный во времени электрический сигнал, получают звуковой сигнал в аналоговой форме. Поскольку амплитуда звуковой волны определяет громкость звука, а ее частота - высоту звукового тона, постольку для сохранения достоверной информации о звуке напряжение электрического сигнала должно быть пропорционально звуковому давлению, а его частота должна соответствовать частоте колебаний звукового давления.

Дискретизация сигнала заключается в выборке отсчетов аналогового сигнала с заданной периодичностью и определяется частотой дискретизации. Причем частота дискретизации должна быть не менее удвоенной частоты наивысшей гармоники (частотной составляющей) исходного звукового сигнала. Поскольку человек способен слышать звуки в частотном диапазоне от 20 Гц до 20 кГц, максимальная частота дискретизации исходного звукового сигнала должна составлять не менее 40 кГц, т. е. отсчеты требуется проводить 40 000 раз в секунду. В связи с этим в большинстве современных звуковых систем ПК максимальная частота дискретизации звукового сигнала составляет 44,1 или 48 кГц.

Кодирование заключается в преобразовании в цифровой код квантованного сигнала. При этом точность измерения при квантовании зависит от числа разрядов кодового слова. Если значения амплитуды записать с помощью двоичных чисел и задать длину кодового слова N разрядов, число возможных значений кодовых слов будет равно 2N. Столько же может быть и уровней квантования амплитуды отсчета.

МОДУЛЬ СИНТЕЗАТОРА Электромузыкальный цифровой синтезатор звуковой системы позволяет генерировать практически любые звуки, в том числе и звучание реальных музыкальных инструментов. Принцип действия синтезатора иллюстрирует рис. 5.5. Синтезирование представляет собой процесс воссоздания структуры музыкального тона (ноты). Звуковой сигнал любого музыкального инструмента имеет несколько временных фаз.

Для каждого музыкального инструмента вид сигнала будет своеобразным, но в нем можно выделить три фазы: атаку, поддержку и затухание. Совокупность этих фаз называется амплитудной огибающей, форма которой зависит от типа музыкального инструмента. Длительность атаки для разных музыкальных инструментов изменяется от единиц до нескольких десятков или даже до сотен миллисекунд. В фазе, называемой поддержкой, амплитуда сигнала почти не изменяется, а высота музыкального тона формируется во время поддержки. Последней фазе, затуханию, соответствует участок достаточно быстрого уменьшения амплитуды сигнала.

В современных синтезаторах звук создается следующим образом. Цифровое устройство, использующее один из методов синтеза, генерирует так называемый сигнал возбуждения с заданной высотой звука - ноту, которая должна иметь спектральные характеристики, максимально близкие к характеристикам имитируемого музыкального инструмента в фазе поддержки, как показано на рис. 5.5, б. Далее сигнал возбуждения подается на фильтр, имитирующий амплитудно-частотную характеристику реального музыкального инструмента. На другой вход фильтра подается сигнал амплитудной огибающей того же инструмента. Далее совокупность сигналов обрабатывается с целью получения специальных звуковых эффектов, например эха (реверберация), хорового исполнения (хорус).

МОДУЛЬ МИКШЕРА Модуль микшера звуковой карты выполняет: ■ коммутацию (подключение/отключение) источников и приемников звуковых сигналов, а также регулирование, их уровня; ■микширование (смешивание) нескольких звуковых сигналов и регулирование уровня результирующего сигнала. К числу основных характеристик модуля микшера относятся: ■ число микшируемых сигналов на канале воспроизведения; ■ регулирование уровня сигнала в каждом микшируемом канале; ■ регулирование уровня суммарного сигнала; ■ выходная мощность усилителя; ■ наличие разъемов для подключения внешних и внутренних приемников/источников звуковых сигналов. Источники и приемники звукового сигнала соединяются с модулем микшера через внешние или внутренние разъемы. Внешние разъемы звуковой системы: Joystick/MIDI - для подключения джойстика или MIDI-адаптера; М/с In - для подключения микрофона; Line In - линейный вход для подключения любых источников звуковых сигналов; Line Out - линейный выход для подключения любых приемников звуковых сигналов; Speaker - для подключения головных телефонов (наушников) или пассивной акустической системы. Программное управление микшером осуществляется либо средствами Windows, либо с помощью программы-микшера, поставляемой в комплекте с программным обеспечением звуковой карты. Стандарт Sound Blaster поддерживает приложения в виде игр для DOS, в которых звуковое сопровождение запрограммировано с ориентацией на звуковые карты семейства Sound Blaster. Стандарт Windows Sound System (WSS) фирмы Microsoft включает звуковую карту и пакет программ, ориентированный в основном на бизнес-приложения.

АКУСТИЧЕСКАЯ СИСТЕМА Акустическая система (АС) непосредственно преобразует звуковой электрический сигнал в акустические колебания и является последним звеном звуковоспроизводящего тракта В состав АС, как правило, входят несколько звуковых колонок, каждая из которых может иметь один или несколько динамиков. Число колонок в АС зависит от числа компонентов, составляющих звуковой сигнал и образующих отдельные звуковые каналы.

Для воспроизведения низких и сверхнизких частот с высоким Качеством в АС помимо двух колонок используется третий звуковой агрегат - сабвуфер (Subwoofer).

Отличительная особенность АС для ПК - возможность наличия собственного встроенного усилителя мощности. АС со встроенным усилителем называется активной. Пассивная АС усилителя не имеет. Главное преимущество активной АС состоит в возможности подключения к линейному выходу звуковой карты. Питание активной АС осуществляется либо от батареек (аккумуляторов), либо от электрической сети через специальный адаптер, выполненный в виде отдельного внешнего блока или модуля питания, устанавливаемого в корпус одной из колонок.

С развитием технологий и стандартов 3D-звука распространение приобрели многоколоночные АС. Первые многоканальные акустические системы имели обозначение 4.0, в состав которых соответственно входят четыре колонки: две фронтальные и две тыловые. Подобная акустика дает неплохие эффекты в играх, создавая трехмерный звук.

Surround EX, как в кинотеатрах. Во многих качественных системах 5.1., 7.1 и 7.2 можно встретить звуковые процессоры, которые декодируют многоканальный звук в соответствии с определенными форматами: для акустики 5.1 - это Dolby Digital, DTS и Dolby prologic, а для 7.1 и 7.2 - Dolby Digital Surround EX и DTS Surround gX. Именно наличие этого компонента позволяет использовать компьютерную акустику для домашнего кинотеатра. Основные характеристики АС: ■ полоса воспроизводимых частот; ■ чувствительность; ■ коэффициент гармоник; ■ мощность.

Чувствительность звуковой колонки (Sensitivity) характеризуется звуковым давлением, которое она создает на расстоянии 1 м при подаче на ее вход электрического сигнала мощностью 1 Вт. В соответствии с требованиями стандартов чувствительность определяется как среднее звуковое давление в определенной полосе частот. Чем выше значение этой характеристики, тем лучше АС передает динамический диапазон музыкальной программы.

УСТРОЙСТВА ПОДГОТОВКИ И ВВОДА ИНФОРМАЦИИ Клавиатура Для обработки информации с помощью ПК пользователь должен ввести информацию в компьютер. Основными устройствами ввода данных и управления системой являются клавиатура, мышь, джойстик. Широкое распространение получили такие устройства ввода информации, как сканер, цифровая камера, дигитайзер, сенсорная панель. Клавиатура (Keyboard) является основным устройством ввода информации в ПК, хотя мышь все больше берет на себя выполнение функций управления. Принцип действия клавиатуры представлен на рис. 6.1, а. Основным элементом клавиатуры являются клавиши. Сигнал при нажатии клавиши регистрируется контроллером клавиатуры и передается в виде так называемого скэн-кода на материнскую плату. Скэн-код - это однобайтовое число, младшие 7 бит которого пред-ставляют идентификационный номер, присвоенный каждой клавише. На материнской плате ПК для подключения клавиатуры также используется специальный контроллер. Когда скэн-код поступает в контроллер клавиатуры, инициализируется аппаратное прерывание, процессор прекращает свою работу и выполняет процедуру, анализирующую скэн-код. Скэн-код трансформируется в код символа (так называемые коды ASCII). При этом обрабатывающая процедура сначала определяет установку клавишей и переключателей, чтобы правильно получить вводимый код (например, «ф» или «Ф»). Затем введенный код помещается в буфер клавиатуры, представляющий собой область памяти, способную запомнить до 15 вводимых символов. Контроллер кла-виатуры выполняет функции самоконтроля в процессе загрузки системы. Процесс самоконтроля при загрузке отображается однократным миганием трех индикаторов клавиатуры.

Оптико-механическая мышь состоит из следующих основных элементов. В нижней плоскости корпуса мыши находится отверстие, которое открывается поворотом пластмассовой шайбы. Под шайбой находится шарик диаметром 1,5...2 см, изготовленный из металла с резиновым покрытием (рис. 6.2). В непосредственном контакте с шариком находятся валики. Причем только один из валиков служит для управления шариком, а два других валика регистрируют механические передвижения

мыши. При перемещении мыши по коврику шарик приходит в движение и вращает соприкасающиеся с ним валики. Оси вращения валиков взаимно-перпендикулярны. На этих осях установлены диски с прорезями, которые вращаются между двумя пластмассовыми цоколями. На одном цоколе находится источник света, а на другом - фоточувствительный элемент (фотодиод, фоторезистор или фототранзистор). С помо-щью такого фотодатчика растрового типа точно определяется относительное перемещение мыши. С помощью двух растровых датчиков устанавливается направление перемещения мыши (по последовательности освещения фоточувствительных элементов) и скорость перемещения в зависимости от частоты импульсов. Импульсы с выхода фоточувствительных элементов при помощи микроконтроллера преобразуются в совместимые с ПК данные и передаются на материнскую плату. Оптическая мышь функционирует аналогично оптико-механической мыши, отличаясь тем, что ее перемещение регистрируется оптическим датчиком. Такой способ регистрации перемещения заключается в том, что оптическая мышь посылает луч на специальный коврик.

Отраженный от коврика луч поступает на оптоэлектронное устройство, расположенное в корпусе мыши. Направление движения мыши определяется типом полученного сигнала. Конструктивно оптическая мышь устроена так, что внутри ее корпуса расположены две пары светодиододов и фотоэлементов. Один светодиод обычно излучает в красной области спектра, а другой - в инфракрасной. При этом каждый фотоэлемент регистрирует отраженный от коврика луч в своей области спектра. Коврик для перемещения мыши серебристого цвета состоит из цветных горизонтальных (синих) и вертикальных (серых) линий. Если мышь находится между линиями сетки, то от серебристой поверхности одинаково отражаются лучи красного и инфракрасного светодиодов. При перемещении мыши на синюю линию излучение красного света поглащается и сигнала с соответствующего фотоэлемента не поступает. Аналогично не поступает сигнал с фотоэлемента, регистрирующего отраженный сигнал в инфракрасной линии спектра, при перемещении мыши на серую линию. При перемещении мыши по коврику фотоэлементы поочередно вырабатывают сигналы, отражающие перемещение в двух координатах. Эти сигналы передаются в ПК, где с помощью драйвера преобразуются с целью управления движением курсора на экране. Преимуществами оптической мыши являются высокая точность определения позиционирования и надежность. По принципу подключения к компьютеру мыши можно подразделить на проводные, связанные с компьютером электрическим кабелем («хвостатые» мыши),и бесконтактные (беспроводные, «бесхвостые»). Беспроводные мыши - это инфра-красные или радиомыши.

Трэкбол (Trackball) по конструкции напоминает мышь, у которой шар расположен не внутри корпуса, а на верхней его части. Принцип действия и способ передачи данных трэкбола такой же, как у мыши. Обычно трэкбол использует оптико-механический принцип регистрации положения шарика. Большинство трэкболов управляются через последовательный порт, причем назначение выводов аналогично разъему мыши. Основные отличия трэкбола от мыши в том, что трэкбол обладает стабильностью за счет тяжелого корпуса и не требует специальной площадки для движения. Для пользователей первых поколений ПК типа Notebook и Laptop предлагались внешние или встроенные трэкболы. Джойстик Джойстик (joy stick) - устройство ввода в области компьютерных игр. Создавался джойстик для использования на специальных военных тренажерах и обычно имитировал устройство управления какой-либо военной техникой. Цифровые джойстики, как правило, применяются в игровых приставках и в игровых компьютерах. Любой джойстик состоит из двух элементов: координатной части - ручки или руля, перемещение которой изменяет положение виртуального объекта в пространстве, и функциональных кнопок. Число кнопок может быть от трех до восьми, и большинству из них, кроме главной кнопки «Огонь» или гашетки, можно в зависимости от игры присваивать разные значения: смена оружия, коробка скоростей и т. д.

СКАНЕРЫ Сканер (Scanner) - устройство ввода в ЭВМ информации в виде текстов, рисунков, слайдов, фотографий на плоских носителях, а также изображения объемных объектов небольших размеров. Метод сканирования использовался при передаче фотографических изображений по телеграфу еще в 1850 г. Первый черно-белый сканер был создан в 1863 г., а цветной - в 1937 г. Принцип действия и классификация сканеров Сканер как оптоэлектронный прибор включает следующие функциональные компоненты: датчик, содержащий источник света, оптическую систему, фотоприемник, механизм перемещения датчика (или оптической системы) относительно оригинала. Электронное устройство обеспечивает преобразование информации в цифровую форму. Сканирование представляет собой цифровое кодирование изображения, заключающееся в преобразовании аналогового сигнала яркости в цифровую форму.

В процессе сканирования оригинал освещается источником света. Светлые области оригинала отражают больше света, чем темные. Отраженный (или преломленный) свет оптической системой направляется на фотоприемник, который преобразует интенсивность принимаемого света в соответствующее значение напряжения. Аналоговый сигнал преобразуется в цифровой для дальнейшей обработки с помощью ПК.

Типы сканеров В зависимости от способа перемещения фоточувствительного элемента сканера и носителя изображения относительно друг друга сканеры подразделяются на две основных группы - настольные (Desktop) и ручные (Hand-held). К числу настольных сканеров относятся планшетные (Flatbed), роликовые (Sheet-feed) , барабанные (Drum) и проекционные (Overhead/Camera) сканеры. Планшетные сканеры, или сканеры плоскостного типа, используются для ввода графики и текста с носителей формата А4 или A3. Однако при этом планшетные сканеры - наиболее популярные устройства ввода текстовой и графической информации. Они обеспечивают необходимое качество изображений, используемых как в деловой корреспонденции, так и в высокохудожественных изданиях

Сканирующий элемент на основе технологии VAROS дополнен стеклянной пластиной, расположенной между линзами и ПЗС. Вначале осуществляется сканирование аналогично традиционной технологии. Затем стеклянная пластина поворачивается, и процесс сканирования повторяется. Подобное устройство дает сканеру возможность считать данные со смещением в полпиксела. Программное обеспечение, объединяющее результаты первого и второго этапов сканирования, позволяет получить вдвое больше данных, а реальное разрешение возрастает вдвое.

Характеристики сканеров При выборе типа и модели сканера следует принимать во внимание следующие основные характеристики. Разрешающая способность определяется плотностью расположения распознаваемых точек и выражается в точках на дюйм (dpi - dot per inch). Сканеры имеют два параметра разрешающей способности: оптическое разрешение и программное. Оптическое разрешение - показатель первичного сканирования. Программными методами можно в дальнейшем повысить разрешение. Например, оптическое разрешение сканера может быть 300х600 dpi, а программное - до 4800х4800 dpi. Оптическое разрешение имеет более важное значение для пользователя. Оптическое разрешение зависит от размера элемента ПЗС-датчика и характеризует плотность, с которой производится выборка информации в заданной области оригинала. Область сканирования - максимальный размер оригинала для данного сканера. Метод сканирования определяет одно- или трехпроходный способ считывания информации в цветных сканерах. Скорость сканирования - число страниц черно-белого оригинала, сканируемых в минуту с максимальным оптическим разрешением сканера. Разрядность сканера измеряется в битах и определяет то количество информации, которое необходимо для оцифровки каждой точки изображения, а также количество цветов, которое способен распознать сканер. 24 бит соответствуют 16,7 млн цветов, а 30 бит - миллиарду. Как правило, человеческий глаз не в состоянии отличить 16-битный цвет от 24-битного.

ЦИФРОВЫЕ КАМЕРЫ Цифровая камера - устройство для фото- или видеосъемки, в котором изображение регистрируется на систему матриц и сохраняется в цифровом виде.

Цифровая фотокамера имеет не только внешнее, но и функциональное сходство с обычной фотокамерой, применяемой в галогенно-серебряной (пленочной) фотографии, и 21

содержит в светонепроницаемом корпусе матрицу, объектив, затвор, видоискатель, процессор, карту памяти

Web-КАМЕРЫ Web-камера представляет собой цифровое устройство, производящее видеосъемку, оцифровку, сжатие и передачу по компьютерной сети видеоизображения. Информация о Web-камере как новом периферийном устройстве ПК появилась в печати в 1992 г. В настоящее время они стали вполне штатными техническими средствами информационно-коммуникационных технологий.

ДИГИТАЙЗЕРЫ И ЭЛЕКТРОННЫЕ ПЛАНШЕТЫ Дигитайзер (Digitazer), шли графический планшет, -устройство для оцифровки графических изображений, позволяющее преобразовывать в векторный формат изображение, полученное в результате движения руки оператора. Дигитайзеры используются в системах автоматизированного проектирования (САПР) для ввода в компьютер графической информации в виде чертежей и рисунков: проектировщик водит пером-курсором по планшету, а изображение фиксируется в виде графического файла.

СЕНСОРНЫЕ УСТРОЙСТВА ВВОДА Сенсорное устройство ввода основано на введении информации в ПК при прикосновении к экрану. Основными компонентами сенсорного экрана являются: ■ сенсорная панель, выполняющая функцию датчика, генерирующего сигналы, указывающие, к какому участку произведено прикосновение; контроллер, обрабатывающий сигналы датчика и транслирующий их в данные, которые передаются в процессор ПК через интерфейсы RS232 или USB; ■ программный драйвер, обеспечивающий интерфейс с операционной системой ПК. В этих устройствах используются четыре базовые сенсорные технологии - резистивная, емкостная, акустическая и инфракрасная


Похожая информация.


Аудиосистема ПК – комплекс устройств, обеспечивающих воспроизведение, запись и обработку звука с помощью ПК. Включает аудиодаптер (звуковая плата), акустическую систему (динамики с усилителем НЧ, наушники), микрофон.

Аудиоадаптер – дочерняя плата, обеспечивающая преобразование цифровых данных в аналоговые и обратно для вывода/ввода звука с помощью ПК.

Всегда имеет выход для передачи звукового сигнала на усилитель и вход для ввода звукового сигнала с внешнего источника в ПК для последующей обработки. Дорогие аудиоадаптеры имеют несколько входов и выходов.

Аудиоадаптеры различаются:

1)разрядностью ввода/вывода цифрового звука

2)способами синтеза звука

3)наличием/отсутствием микросхем создания дополнительных звуковых эффектов (преобразование звука, объемный 3D-звук и т.д.)

С помощью аудиосистемы ПК можно воспроизводить обычные аудио-CD, но для хранения звуковых данных в ПК разработаны специальные более эффективные форматы. Наиболее популярными являются – MP3 и WMA. Они позволяет на одном компакт-диске хранить в 10-15 раз больший объем звуковых данных, чем на обычном аудио-диске.

Достичь хорошего звучания можно только при использовании высококачественной компьютерной аудиосистемы, но еще лучше передавать звук через цифровой выход на качественный бытовой усилитель и колонки.


Стандарты аудиорешений: AC"97 и HD Audio В качестве интегрированного аудиорешения в системных платах Intel® для настольных ПК используется либо AC"97, либо звуковая подсистема Intel® High Definition Audio.

AC"97 AC"97 (сокращенно от Audio Codec "97) – это стандарт для аудиокодеков, разработанный в лабораториях Intel (Intel Architecture Labs) в 1997 г. Этот стандарт используется в основном в системных платах, модемах, звуковых картах и корпусах с аудио решением передней панели. AC"97 поддерживает частоту дискретизации 96 кГц при использовании 20-разрядного стерео разрешения и 48кГц при использовании 20-разрядного стерео для многоканальной записи и воспроизведения. В 2004 г. AC"97 был заменен технологией Intel® High Definition Audio (HD Audio).

HD Audio Звуковая подсистема Intel® High Definition Audio основана на спецификации, выпущенной корпорацией Intel в 2004 г., обеспечивающей воспроизведение большего количества каналов с более высоким качеством звука, чем обеспечивалось при использовании интегрированных аудио кодеков, как AC"97. Аппаратные средства, основанные на HD Audio, поддерживают 192 кГц/32-разрядное качество звучания в двухканальном и 96 кГц/32-разрядное в многоканальном режимах (до 8 каналов).

Microsoft* Windows Vista поддерживает только акустические периферийные устройства High Definition (как, например, аудиорешения передней панели).

Отсутствует вывод звука в колонках или наушниках Отсутствие вывода звука может быть связано с несколькими проблемами. Проблему отсутствия звукового выхода можно решить одним из следующих способов.

Лекция №6. Звуковоспроизводящие системы

1. Основные компоненты звуковой подсистемы ПК.

2. Принципы обработки звуковой информации.

Основные компоненты звуковой подсистемы ПК.

Звуковая система ПК в виде звуковой карты появилась в 1989 г., существенно расширив возможности ПК как технического средства информатизации.

Звуковая система ПК - комплекс программно-аппаратных средств, выполняющих следующие функции:

· запись звуковых сигналов, поступающих от внешних источников, например, микрофона или магнитофона, путем преобразования входных аналоговых звуковых сигналов в цифровые и последующего сохранения на жестком диске;

· воспроизведение записанных звуковых данных с помощью внешней акустической системы или головных телефонов (наушников);

· воспроизведение звуковых компакт-дисков;

· микширование (смешивание) при записи или воспроизведении сигналов от нескольких источников;

· одновременная запись и воспроизведение звуковых сигналов (режим Full Duplex);

· обработка звуковых сигналов: редактирование, объединение или разделение фрагментов сигнала, фильтрация, изменение его уровня;

· обработка звукового сигнала в соответствии с алгоритмами объемного (трехмерного - 3D-Sound) звучания;

· генерирование с помощью синтезатора звучания музыкальных инструментов, а также человеческой речи и других звуков;

· управление работой внешних электронных музыкальных инструментов через специальный интерфейс MIDI.

Звуковая система ПК конструктивно представляет собой звуковые карты, либо устанавливаемые в слот материнской платы, либо интегрированные на материнскую плату или карту расширения другой подсистемы ПК, а также устройства записи и воспроизведения аудиоинформации (акустическую систему). Отдельные функциональные модули звуковой системы могут выполняться в виде дочерних плат, устанавливаемых в соответствующие разъемы звуковой карты.

Классическая звуковая система, как показано на рис. 1, содержит:

Модуль записи и воспроизведения звука;

Модуль синтезатора;

Модуль интерфейсов;

Модуль микшера (обеспечивает обмен данными между звуковой системой и другими устройствами – как внешними, так и внутренними.);

Акустическую систему.

Рис. 1. Структура звуковой системы ПК.

Первые четыре модуля, как правило, устанавливаются на звуковой карте. Причем существуют звуковые карты без модуля синтезатора или модуля записи/воспроизведения цифрового звука. Каждый из модулей может быть выполнен либо в виде отдельной микросхемы, либо входить в состав многофункциональной микросхемы. Таким образом, Chipset звуковой системы может содержать как несколько, так и одну микросхему.

Конструктивные исполнения звуковой системы ПК претерпевают существенные изменения; встречаются материнские платы с установленным на них Chipset для обработки звука.

Звуковое оборудование и программы.

За воспроизведение и запись звука в компьютерах отвечают специальные звуковые адаптеры. Звуковой адаптер содержит еще один специализированный процессор, тем самым освобождая основной процессор от функций по управлению воспроизведением звука. С помощью звукового адаптера можно записывать звуковую информацию, воспроизводить речь и музыку. Также современные звуковые платы позволяют производить обработку звука, монтаж музыкальных композиций. Кроме закодированного с заданной частотой дискретизации любого звука, возможно воспроизведение музыки, создаваемой по командам компьютера. Число голосов – параметр звуковой карты, определяющей максимальное количество одновременно синтезируемых звуков. Основным направлением развития современных звуковых плат является поддержка объемного звука. В этом случае появляется возможность позиционирования источников звука в пространстве. Для воспроизведения объемного звука необходимо не менее двух акустических систем. Однако для получения лучшего эффекта от объемного звучания лучше использовать четыре колонки – две спереди и две сзади.

Подавляющее большинство современных компьютеров оборудовано звуковой картой. Хорошие звуковые платы Sound Blaster Audigy различных версий выпускает фирма Creative. Вместе с тем в настоящее время многие материнские платы поддерживают качественный шестиканальный звук.

Чрезвычайно важно для получения качественного звука иметь хорошие акустические системы. Современные звуковые платы имеют цифровой выход SPDIF, позволяющий подключиться к бытовой технике. Однако часто более удобно использовать для компьютера собственную акустику. При использовании компьютера для просмотра видеофильмов, записанных на DVD, обязательно следует использовать современную акустическую систему из пяти колонок и сабвуфера.

Для того чтобы создавать собственные музыкальные произведения может понадобиться специальная клавиатура, подключаемая к интерфейсу MIDI. Музыкальные клавиатуры, подключаемые к звуковой карте, различаются количеством октав (обычно от трех до семи), а также количеством клавиш и их размером. Наиболее известными производителями являются фирмы Korg, Roland, Yamaha. Неплохие любительские клавиатуры выпускает фирма Casio.

Для качественной записи голоса нужно использовать соответствующие микрофоны. Простые компьютерные микрофоны не обеспечивают высокое качество звука. Кроме того, микрофонный вход большинства звуковых плат также не обладают хорошим качеством. Поэтому рекомендуется использовать микрофонный усилитель, который подключается к линейному входу звуковой платы. Микрофонный усилитель обеспечит подключение двух микрофонов, что позволит записывать стереофонический звук.

В последнее время широкое распространение получили миниатюрные цифровые проигрыватели, хранящие музыку в формате МР3. Музыка с компьютера записывается в память такого устройства, после чего ее можно прослушать в любом месте через наушники.

В качестве дополнительного источника звука для компьютера может рассматриваться компьютерный радиоприемник. Он может быть реализован в качестве дополнительной платы, а может подключаться к порту USB.

Конечно, работа со звуком на компьютере немыслима без специальных программ. Простейшие программы для работы со звуком включены в состав всех версий Windows. С их помощью вы можете настроить громкость разных источников звука, установить чувствительность микрофона и линейного входа. Кроме того, вы можете записать небольшой звуковой фрагмент, выполнить с ним простые преобразования и записать результат в файл. Также в Windows включены средства проигрывания компакт-дисков и мультимедийных файлов. Вы можете записывать музыку на цифровые плееры, прослушивать музыку из Интернета.

При использовании музыкальной клавиатуры требуется работа со звуком в реальном масштабе времени. Наиболее мощной такой программой является Cakewalk Home Studio, но можно обойтись и более простыми программами.

Для обработки звуков следует использовать звуковой редактор. Лучшими звуковыми редакторами являются программы Sound Forge и WaveLab. Для многоканального монтажа применяется редактор Cool Edit. Для создания и редактирования музыки, а также для добавления вокала к музыке, применяются программы, называемые секвенсорами MIDI и аудио. Лучшими программами этого класса являются Cakewalk Sonar и Cubase VST.

Пение караоке стало в последнее время достаточно популярным. Существуют несколько программ для создания файлов караоке и для их воспроизведения. Достаточно удобна программа Karaoke GALAXY Maker, позволяющая создавать караоке. Для воспроизведения таких файлов используют программы Karaoke GALAXY Player или vanBasco’s Karaoke Player.

Краткое описание

В настоящее время наша жизнь уже абсолютно не мыслима без каждодневного применения технологий, в частности, компьютерных. Компьютерные технологии сочетают в себе сотни различных функций, являя собой пример неограниченной работоспособности, направленности и, конечно, практичности.
Появление систем мультимедиа, безусловно, производит революционные изменения в таких областях, как образование, компьютерный тренинг, во многих сферах профессиональной деятельности, науки, искусства, в компьютерных играх и т.д.
Качественное «железо» и, безусловно, хорошая акустическая система для ПК нужна любому пользователю. Фирм-производителей акустики на данный момент очень много. У каждой фирмы есть как преимущества, так и недостатки. Поэтому выбрать хорошую акустическую систему для компьютера часто бывает трудновато. Если нужно хорошее качество звука при прослушивании музыки, просмотре фильмов, или же при прохождении какой-либо трехмерной игры, то относиться к покупке акустики стоит более серьезно. С приобретением качественной акустики для музыки, игр и фильмов придется немного повозиться! Объясняется это тем, что качество звучания зависит от многих факторов, которые будут рассмотрены далее.

Прикрепленные файлы: 1 файл

1.6 Параметры и назначение акустических систем ПК.

Назначение

Предназначается для воспроизведения звука. Если компьютер оборудован звуковыми колонками и звуковой картой его называют мультимедийным.

Звуковая карта (англ. soundcard) - это плата, которая позволяет работать со звуком на компьютере. В настоящее время звуковые карты бывают как встроенными в материнскую плату, так и отдельными платами расширения или внешними устройствами.

Активные колонки используются как устройство воспроизведения и усиления музыки, речи и звуковых эффектов.

Классификация

Встроенные звуковые карты.

Куда они встроены? В материнские платы. Прямо на «мать» напаивают входы/выходы и кодеки, а всю вычислительную обработку на себя берет центральный процессор. Подобное звуковое решение почти бесплатно, потому и для непритязательных пользователей более чем приемлемо – несмотря на отвратительное качество звучания.

Мультимедийные звуковые карты.

Это наиболее древняя категория плат: именно они появились первыми и сделали компьютер средством воспроизведения и записи музыки. Эти карты, в отличие от встроенных, обладают собственным звуковым процессором, который занимается обработкой звука, расчетом трехмерных звуковых эффектов используемых в играх, микшированием звуковых потоков и т.п., что позволяет разгрузить центральный процессор компьютера для обработки более важных задач.

Как правило, качество звука в отдельных мультимедиа-картах действительно выше встроенных.

Полупрофессиональные звуковые карты

Собственно называть эти платы можно по-разному – либо полупрофессиональные, либо топовые мультимедийные. Но скорее это все же полупрофессиональные платы. Как правило их выпускают производители профессионального оборудования, ориентируясь не на музыкантов, а на любителей хорошего звука.

Они отличаются от мультимедийных в первую очередь профессиональными схемотехническими решениями и высоким качеством воспроизведения звука. При этом в них, как правило, не используются серьезные звуковые процессоры, и опять же всю тяжесть обработки 3D-звука взваливает на себя центральный процессор.

Как правило, карты от производителей профессионального оборудования комплектуются драйверами для профессиональных же программ для работы с музыкой и звуком. Так что такая плата станет отличным стартом для начинающего музыканта.

Профессиональные звуковые карты

Эти карты рассчитаны на профессиональных музыкантов, аранжировщиков, музыкальных продюсеров. Всех, кто занимается производством и записью музыки. В соответствии с задачами – и особенности: высочайшее качество воспроизведения и записи звука, минимум искажений, максимум возможностей для работы с профессиональным ПО и подключения профессионального оборудования.

У профессиональных карт как правило нет мультимедийных драйверов и поддержки DirectX, что делает многие из них бесполезными в играх. Они не поддерживают даже стандартные системные регулировки громкости – каждый канал регулируется в специальной контрольной панели, показывающей уровень сигнала в децибеллах.

Входы/выходы вместо стандартного «миниджека» выполнены либо RCA, либо в виде разъемов XLR, выведенных с помощью специальных интерфейсных кабелей. Многие карты располагают внешним блоками, куда выводятся все разъемы для удобства подключения. Эти карты рассчитаны на подключение профессиональных студийных акустических мониторов, микшерных пультов, предусилителей и прочих «серьезных» устройств.

Внешние звуковые карты

Это относительно свежая тенденция в мире звуковых плат, получившая свое развитие лишь за последний год. Внешние звуковые платы подключаются к компьютеру с помощью интерфейсов USB, USB 2.0 или FireWire.

Во-первых, вынос карты за пределы корпуса PC позволяет легко решить некоторые проблемы, связанные с наводками и помехами, идущими от других компонентов компьютера и влияющих на качество звука.

Во-вторых, все большую популярность набирают barebone-системы – небольшие системные блоки с большим количеством интерфейсных разъемов и, как правило, не более чем одним PCI-слотом, занять который, возможно, придется чем-то более нужным для пользователя чем звукокарта.

В-третьих, портативная профессиональная звуковая плата, подключаемая «на лету» к любому компьютеру – это готовая портативная студия!

Но есть и проблемы. Первые выпущенные для USB устройства не обрели должной популярности из-за невысокой пропускной способности этого интерфейса. Вводились ограничения на количество и качество передаваемых сигналов. Сегодня наблюдается настоящий бум на профессиональные карты, подключаемые по шине FireWire: за счет высокой пропускной способности интерфейса не возникает практически никаких проблем с количеством каналов и качеством сигнала.

Классификация колонок.

  • Активные (встроенный усилитель, требуют дополнительных источников питания, регулятор громкости и тембра);
  • Пассивные (маленькая мощность).

1.7 Основные принципы работы

Принципы работы обычных звуковых карт

Звуковые карты состоят из двух основных частей: синтезатора для обработки MIDI команд и блока аналогово-цифрового (АЦП - AnalogDigitalConverter - ADC) и цифроаналогового (ЦАП - DigitalAnalogConverter - DAC) преобразователя.

С помощью АЦП и ЦАП обеспечивается возможность моно- или стереофонической записи и воспроизведения аудиофайлов с уровнем качества от кассетного магнитофона до аудио-CD. Разрядность АЦП и ЦАП (аналого-цифровых и цифроаналоговых преобразователей) сейчас, как правило, 16 бит, частота дискретизации от 5 до 44, 1 кГц. При использовании двух каналов DMA возможны одновременная запись и воспроизведение аудиосигналов. Возможность двунаправленной работы многих звуковых карт сейчас активно используется для общения через Internet. PCI аудиокарты за счет намного более высокой скорости работы шины всегда поддерживают полный дуплекс.

Синтезатор обеспечивает имитацию звучания музыкальных инструментов и воспроизведение различных звуков при выполнении команд MIDI. Синтезатор может быть выполнен как на основе FM синтеза, так и на основе таблицы волн. При FM синтезе возможно одновременное звучание до 20 инструментов, а с использованием таблицы волн - до 512 и более. Очень часто путают количество одновременно звучащих инструментов и разрядность звуковой карты. Еще раз обращаем внимание на то, что 32-х и 64-х разрядных классических звуковых карт НЕ БЫВАЕТ. Цифра 32 или 64 (например, SoundBlaster 32 или SoundBlaster AWE64) означает максимальное количество одновременно звучащих инструментов и не более того.

Звуковые карты на PCI, как правило, не имеют встроенной таблицы волн. Звуковые карты PCI имеют 32-разрядную шину для обмена данными, но процедуры цифровой обработки звука и приема/передачи результатов обработки могут быть с разрядностью 64 и более.

Структура аудиотракта ПК

По своей внутренней структуре персональный компьютер (ПК) во многом схож со стационарным аудиооборудованием, однако ПК – модульная конструкция, что позволяет нам гибко варьировать конфигурацию в рамках одного устройства (системного блока). В этом заключается одно из главных преимуществ компьютерных систем перед готовыми аудиокомпонентами: вместо того чтобы покупать новый аппарат, можно поменять один или несколько узлов, что обойдётся значительно дешевле.

В большинстве случаев схема формирования звука посредством ПК выглядит следующим образом: цифровой аудиопоток с какого-либо носителя попадает в компьютер. Точнее – в его системную (или, как её ещё называют, материнскую) плату, на которой установлены центральный процессор, оперативная память, чипсеты, контроллеры и прочее. Благодаря взаимодействию звуковой подсистемы и программного обеспечения с основной частью, костяком, компьютера звуковой поток проходит обработку или же подаётся как есть в звуковую подсистему, где преобразуется в аналоговую форму и выводится на активные колонки, наушники или иное оборудование.

Рисунок 2. Звуковая система ПК

Основная часть компьютера по большому счёту остаётся неизменной. Соответственно, возможные направления для улучшения качества звука – подбор соответствующей звуковой карты и акустических систем.

1.8 Звуковые карты. Звуковые характеристики.

Существуют определенные характеристики, которым следует уделить внимание при комплектовании звуковой системы компьютера.

Трехмерный звук. Если вы любитель компьютерных игр, выбирайте звуковую карту, которая поддерживает трехмерный звук. Вся проблема заключается в том, как разместить необходимое количество колонок на ограниченном пространстве.

Игровой и MIDI-порт. На звуковых картах часто встречается 15-контактный разъем. Это совмещенный игровой и MIDI-порт. MIDI-порт предназначен для музыкальных инструментов с цифровым интерфейсом (например, синтезаторов или MIDI-клавиатур). Игровой порт предназначен для подключения джойстика. При наличии нескольких звуковых карт в системе (например, встроенной и отдельной) следует отключить все игровые порты, кроме одного - иначе это может привести к аппаратному конфликту.

Память MIDI. Высокопроизводительные звуковые карты (например, SoundBlasterLive 5.1 или Audigy) обычно оснащены разъемами для модулей памяти SIMM для установки дополнительной памяти. Это и есть память MIDI, которая используется при профессиональной работе со звуком.

Разъем для аудио-CD. При выборе звуковой карты обратите внимание на наличие разъема для подключения звукового выхода CD-дисковода. Это небольшой 4-контактный разъем, расположенный на звуковой карте. При помощи тонкого 4-жильного кабеля он соединяется с аналогичным разъемом на CD-дисководе. Именно таким образом обеспечивается возможность прослушивания звуковых компакт-дисков на компьютере.

Колонки. Наконец, к звуковой карте следует подключить колонки. Рекомендуется использовать высококачественные активные колонки с широким динамическим и частотным диапазоном.

Заключение.

С развитием компьютерных технологий звуковые платы также претерпевали изменения. Они снабжались все новыми разъемами, дополнительными устройствами, менялись материалы изготовления. В настоящее время на рынке существует огромное количество разновидностей звуковых карт от различных производителей, находящихся в различных ценовых категориях. Звуковая карта может превратить компьютер в самую настоящую аудиостудию, где можно микшировать звук, добавлять различные звуковые эффекты, накладывать фоновую мелодию и так далее.

Развитие самих акустических систем также не стоит на месте. Dolby Digital внедряется в домашний обиход посредством технологии DVD, ведь звук, записанный в AC-3, можно найти и на DVD-Video, и на обычных DVD-ROM. При записи фильмов на DVD применяют три основных звуковых стандарта: PCM, Dolby Digital и MPEG. Поэтому, принимая во внимание, что практически любой современный DVD-проигрыватель имеет встроенный декодер AC-3, оказывается, что звуковые дорожки в формате Dolby Digital имеются почти на всех дисках DVD.

По моему мнению, ни один персональный компьютер не может обходиться без мультимедийных технологий. Звуковая система является частью этих технологий. Сейчас сложно представить современный компьютер без возможности записи, редактирования и воспроизведения звуковых файлов. Звуковая система компьютера является значимой и довольно важной системой, без которой его было бы трудно назвать мультимедийным.

Список литературы и интернет ресурсов

  1. www.marak.ucoz.ru
  2. www.compremont.org
  3. www.bigor.bmstu.ru
  4. www.orbiter.ucoz.ru
  5. www.images.yandex.ru