Домой / Аватарка / Как определяются касательные напряжения. Напряжение: полное, нормальное, касательное. Понятие о деформациях. Мера линейной, поперечной и угловой деформации

Как определяются касательные напряжения. Напряжение: полное, нормальное, касательное. Понятие о деформациях. Мера линейной, поперечной и угловой деформации

Подставим выражения закона Гука в уравнение совместности деформаций:

Решая данное уравнение совместно с уравнениями равновесия, найдем неизвестные внутренние усилия в стержнях.

ОСНОВЫ ТЕОРИИ НАПРЯЖЕННОГО СОСТОЯНИЯ

Напряжения в точке. Главные напряжения и главные площадки.

Напряжения являются результатом взаимодействия частиц тела при его нагружении. Внешние сипы стремятся изменить взаимное расположение частиц, а возникающие при этом напряжения препятствуют их смещению. Расположенная в данной точке частица по-разному взаимодействует с каждой из соседних частиц. Поэтому в общем случае в одной и той же точке напряжения различны по различным направлениям.

В сложных случаях действия сил на брус (в отличие от растяжения или сжатия) вопрос об определении наибольших напряжений, а также положения площадок, на которых они дей­ствуют, усложняется. Для решения этого вопроса приходится специально исследовать за­коны изменения напряжений при изменении положения площадок, проходящих через данную точку. Возникает проблема исследования напряженного состояния в точке деформируемого тела.

Напряженное состояние в точке - совокупность напряжений (нормальных и касательных), действующих по всевозможным площадкам (сечениям), проведенным через эту точку.

Изучение напряженного состояния дает возможность анализировать прочность материала для любого случая нагружения тела.

Исследуя напряженное состояние в данной точке деформируемого тела, в ее окрестно­сти выделяют бесконечно малый (элемен­тарный) параллелепипед, ребра которого направлены вдоль соответствующих координатных осей. При действии на тело внешних сил на каждой из граней элемен­тарного параллелепипеда возникают на­пряжения, которые представляют нормаль­ными и касательными напряжениями проекциями полных напряжений на коор­динатные оси (рис. 5.1).

Нормальные напряжения обозначают буквой σ с индексом, соответствующим нормали к площадке, на которой они действуют. Касательные напряже­ния обозначают буквой τ с двумя индексами: первый соответствует нормали к площадке, а второй - направлению самого напряжения (или наоборот).

Таким образом, на гранях элементарного параллелепипеда, выделенного в окрестности точки нагруженного тела, действует девять компонентов напря­жения. Их можно записать в виде следующей квадратной матрицы:

σ х τ ху τ х z

Т σ = τ у x σ у τ у z

τ zx τ z у σ z

Эта совокупность напряжений называется тензором напряжений .

Тензор напряжений полностью описывает напряженное состояние в точке, то есть если известен тензор напряжений в данной точке, то можно найти напряжения на любой из площадок, проходящих через данную точку (заметим, что тензор представляет собой особый математический объект, компоненты которого при повороте координатных осей подчиняются специфическим правилам тензорного преобразования, при этом тензорное исчисление составляет отдельный раздел высшей математики и здесь не рассматривается).

Используем принятое правило знаков для напряжений в общем виде. Нормальное напряжение σ считается положительным, если совпадает по направлению с внешней нормалью к площадке, касательные напряжения τ считаются положительными, если вектор касательных напряжений следует поворачивать против хода часовой стрелки до совпадения с внешней нормалью (рис. 5.2). Отрицательными считаются напряжения обратных направлений.

Не все девять компонентов напряжений, действующих на гранях параллеле­пипеда, независимые (несвязанные друг с другом). В этом легко убедится, составив уравнения равновесия элемента в отношении его вращений относи­тельно координатных осей. Записав уравнения моментов от сил, действую­щих по граням параллелепипеда, и пренебрегая их изменением при переходе от одной грани к другой ей параллельной, получим, что

τ ху = τ ух, τ х z = τ z х, τ yz = τ zy (5.1)

Данные равенства называют законом парности касательных на­пряжений.

Закон парности касательных напряжений: по двум взаимно перпендикуляр­ным площадкам касательные напряжения, перпендикулярные линии пересе­чения этих площадок, равны между собой.

Закон парности касательных напряжений устанавливает зависимость между величинами и направлениями пар касательных напряжений, действующих по взаимно перпендикулярным площадкам элементарного параллелепипеда.

В окрестности исследуемой точки можно выделить бесконечное множество взаимно перпендикулярных площадок. В том числе можно найти и такие площадки, на которых действуют только нормальные напряжения, а каса­тельные напряжения равны нулю. Такие площадки называют главными (более точно – площадки главных напряжений ).

Рассмотрим две взаимно перпендикулярные площадки с касательными напряжениями τ ху и τ ух. Согласно закону парности касательных напряжений эти напряжения равны. Поэтому, если площадку с напряжением τ ху поворачивать до совпадения с площадкой с напряжением τ ух, то обязательно найдется такое положение площадки, когда касательное напряжение τ = 0.

Главные площадки - три взаимно перпендикулярные площадки в окрестно­сти исследуемой точки, на которых касательные напряжения равны нулю.

Главные напряжения - нормальные напряжения, действующие по главным площадкам (то есть площадкам, на которых отсутствуют касательные напряжения).

Главные напряжения обозначаются σ 1 , σ 2 , σ 3 , причем σ 1 ≥ σ 2 ≥ σ 3 .

На главных площадках нормальные напряжения (главные напряжения) принимают свои экстремальные значения – максимум σ 1 , минимум σ 3 .

Тензор напряжений, записанный через главные напряжения, принимает наиболее простой вид:

Т σ = 0 σ 2 0

В зависимости от того, сколько главных напряжений действует в окрестности данной точки, различают три вида напряженного состояния:

1) линейное (одноосное) - если одно главное напряжение отлично от нуля, а два других равны нулю (σ 1 ≠0, σ 2 = 0, σ 3 = 0);

2) плоское (двухосное) - если два главных напряжения отличны от нуля, а одно равно нулю (σ 1 ≠0, σ 2 ≠ 0, σ 3 = 0);

3) объемное (трехосное) - если все три главных напряжения отличны от нуля (σ 1 ≠0, σ 2 ≠ 0, σ 3 ≠ 0).

Линейное напряженное состояние

Линейным или одноосным называется напряженное состояние, при котором два из трех главных напряжений равны нулю (рис. 5.3, а).

Элементы, находящиеся в линейном напряженном состоянии, можно выделить в окрест­ности некоторых точек стержня, работающего на изгиб, иногда - при сложном нагружении, но главным образом на растяжение или сжатие.

Рассмотрим стержень, испытывающий простое растяжение (рис.5.4). Нормальные напряжения в его по­перечных сечениях определяются следующим образом:

Касательные напряжения здесь равны нулю. Следовательно, эти сечения являются главными площадками (σ 1 = σ 0).

Перейдем теперь к определению напряжений на неглавных, наклонных площадках. Выделим площадку, нормаль к которой составляет с осью стержня угол α (рис. 5.5). Проведенную таким образом наклонную площадку будем обозначать α -площадкой, а действующие на ней полные, нор­мальные и касательные напряжения - р α , σ α, τ α соответственно. При этом площадь α -площадки (А α)связана с площадью поперечного сечения стержня (А 0 )следующим образом: А α = А 0 /cos α .

Для определения напряжений воспользуемся методом мысленных сечений. Считая, что наклонная площадка рассекла стержень на две части, отбросим одну из них (верхнюю) и рассмотрим равновесие оставшейся (нижней). Осевая сила (N ) в сечении представляет собой равнодействующую полных на­пряжений р α . Следовательно,

N = р α · А α .

р α = = cos α = σ 0 cos α.

Нормальные и касательные напряжения определим, проецируя полное на­пряжение на нормаль и плоскость α -площадки соответственно:

σ α = р α · cos α;

τ α = р α · sin α,

или, учитывая, что р 0 = σ 0 cos α;

σ α = σ 0 cos 2 α;

τ α = 0,5σ 0 sin 2α .

Из анализа формул видно, что:

1) На площадках, перпендикулярных оси, касательные напряжения равны нулю (такие площадки называются главными , а действующие на них нормальные напряжения – главными нормальными напряжениями ), т.е. при α = 0 в поперечных сечениях стержня τ α = 0, σ α = σ 0 (σ 1 = σ 0 , σ 2 = 0, σ 3 = 0);

2) На площадках, параллельных оси, никаких напряжений нет, поэтому это также главная площадка, т.е. при α = π / 2 в поперечных сечениях стержня τ α = 0, σ α = 0;

3) Наибольшие нормальные напряжения действуют в поперечных сечениях, а наибольшие касательные – на площадках, наклоненных к ним под углом 45°, т.е. при α = ± π / 4 в поперечных сечениях стержня возникают максимальные касательные напряжения τ α = τ max = σ 0 / 2 (нормальные напряжения σ α = σ 0 / 2).

Напряжения на наклонных площадках при плоском напряженном состоянии

Плоским или двухосным называется напряженное состояние, при котором одно из трех главных напряжений равно нулю (рис. 5.3, б).

Плоское (двухосное) напряженное состояние встречается при кручении, изгибе и сложном сопротивлении и является одним из наиболее распространенных видов напряженного со­стояния.

Определим напряжения на наклонных пло­щадках при плоском напряженном состоя­нии. Рассмотрим элементарный параллеле­пипед, грани которого являются главными площадками (рис. 5.6). По ним действуют положи­тельные напряжения σ 1 и σ 2 , а третье глав­ное напряжение σ 3 = 0.

Проведем сечение, нормаль к которому по­вернута на угол α от большего из двух глав­ных напряжений (σ 1) против часовой стрел­ки (положительное направление α ). Напря­жения σ α и τ α на этой площадке будут вызываться как действием σ 1 . так и действием σ 2 .

Запишем правила знаков . Будем считать положительными следующие направления напряжений и углов: нормальные напряжения σ - растягивающие: касательные напряжения τ - вращающие элемент по часовой стрелке: угол α - против часовой стрелки от наибольшего из главных напряжений (α < 45°).

Плоское напряженное состояние может быть представле­но как наложение (суперпозиция) двух взаимноперпендикулярных (ортогональных) одноосных напряженных состояний (рис. 5.7). При этом:

σ α = σ α ΄ + σ α ΄΄,

τ α = τ α ΄ + τ α ΄΄,

где σ α ΄, τ α ΄-напряжения, вызванные действием σ 1 ;

σ α ΄΄, τ α ΄΄ - напряжения, вызванные действием σ 2 .

Напряжения при одноосном напряженном состоянии (от действия Ci) связаны между собой как

σ α ΄ = σ 1 cos 2 α;

τ α ΄ = 0,5 σ 1 sin 2α .

Напряжения σ α ΄΄, τ α ΄΄, вызванные действием σ 2 , можно найти аналогично, но при этом необходимо учесть, что вместо угла α в формулы необходимо под­ставить угол β = - (90°- α ) - угол между α -площадкой и напряжением σ 2 .Отсюда получим

σ α ΄΄ = σ 2 ∙ cos 2 [- (90°- α )] → σ α ΄΄ = σ 2 sin 2 α ;

τ α ΄΄ = 0,5 σ 2 sin 2[- (90°- α )] → τ α ΄΄ = - 0,5 σ 2 sin2 α ;

Окончательно можем записать

σ α = σ 1 cos 2 α + σ 2 sin 2 α = + cos2α ; (5.2)

τ α = 0,5 σ 1 sin 2α - 0,5 σ 2 sin2 α = sin2α . (5.3)


Задача 4.1.1: Совокупность напряжений, возникающих на множестве площадок, проходящих через рассматриваемую точку, называют …

2) полным напряжением;

3) нормальным напряжением;

4) касательным напряжением.

Решение:

1) Ответ верный. Напряженное состояние в точке полностью определяется шестью компонентами тензора напряжений: σ x , σ y , σ z , τ xy , τ yz , τ zx . Зная эти компоненты, можно определить напряжения на любой площадке, проходящей через данную точку. Совокупность напряжений, действующих по множеству площадок (сечений), проходящих через данную точку, называется напряженным состоянием в точке.

2) Ответ неверный! Незнание определения полного напряжения в точке (сила, приходящаяся на единицу площади сечения).

3) Ответ неверный! Напомним, что проекция вектора полного напряжения на нормаль к сечению называется нормальным напряжением.

4) Ответ неверный! Допущена ошибка в определении термина «касательное напряжение».
Проекция вектора полного напряжения на ось, лежащую в плоскости сечения, называется касательным напряжением.

Задача 4.1.2: Площадки в исследуемой точке напряженного тела, на которых касательные напряжения равны нулю, называют …

1) ориентированными; 2) главными площадками;

Решение:

1) Ответ неверный! Термин не соответствует заданному условию. Под ориентированными понимаются площадки, которые проходят через точку по заранее заданному направлению.

2) Ответ верный.

При повороте элементарного объема 1 можно отыскать такую его пространственную ориентацию 2, при которой касательные напряжения на его гранях исчезнут и останутся только нормальные напряжения (некоторые из них могут быть равными нулю). Площадки (грани), на которых касательные напряжения равны нулю, называются главными площадками.

3) Ответ неверный! Термин не соответствует заданному условию. Октаэдрическими называют площадки равнонаклоненные к главным. Касательные напряжения на октаэдрических площадках не равны нулю.

4) Ответ неверный! Напоминаем, что под секущими понимают площадки проведенные через точку, в которой исследуется напряженное состояние.

Задача 4.1.3: Главные напряжения для напряженного состояния, показанного на рисунке, равны… (Значения напряжений указаны в МПа ).

1)σ 1 =150 МПа, σ 2 =50 МПа; 2) σ 1 =0 МПа, σ 2 =50 МПа, σ 3 =150 МПа;

3) σ 1 =150 МПа, σ 2 =50 МПа, σ 3 =0 МПа;

4) σ 1 =100 МПа, σ 2 =100 МПа, σ 3 =0 МПа;

Решение:

1) Ответ неверный! Не указано значение главного напряжения σ 3 =0 МПа.

2) Ответ неверный! Обозначения главных напряжений не соответствуют правилу нумерации.

3) Ответ верный. Одна грань элемента свободна от касательных напряжений. Поэтому это главная площадка, а нормальное напряжение (главное напряжение) на этой площадке также равно нулю.
Для определения двух других значений главных напряжений воспользуемся формулой
,
где положительные направления напряжений показаны на рисунке.

Для приведенного примера имеем , , . После преобразований найдем
В соответствии с правилом нумерации главных напряжений имеем , , , т.е. плоское напряженное состояние.

4) Ответ неверный! Это не главные напряжения, а заданные значения нормальных напряжений, действующие на выделенный элемент.

Задача 4.1.4: В исследуемой точке напряженного тела на трех главных площадках определены значения нормальных напряжений: Главные напряжения в этом случае равны...

1)σ 1 =150 МПа, σ 2 =50 МПа, σ 3 =-100 МПа;

2) σ 1 =150 МПа, σ 2 =-100 МПа, σ 3 =50 МПа;

3) σ 1 =50 МПа, σ 2 =-100 МПа, σ 3 =150 МПа;

4) σ 1 =-100 МПа, σ 2 =50 МПа, σ 3 =150 МПа;

Решение:

1) Ответ верный. Главным напряжениям присваивают индексы 1, 2, 3 так, чтобы выполнялось условие . Следовательно,

2), 3), 4) Ответ неверный! Главным напряжениям присваивают индексы 1, 2, 3 так, чтобы выполнялось условие (в алгебраическом смысле).

Задача 4.1.5: На гранях элементарного объема (см. рисунок) определены значения напряжений в МПа . Угол между положительным направлением оси x и внешней нормалью к главной площадке, на которой действует минимальное главное напряжение, равен …

1) ; 2) ; 3) ; 4) .

Решение:

1), 2), 4) Ответ неверный! По всей видимости, неправильно записана формула для определения угла. Правильная запись:

3) Ответ верный.


Угол определяется по формуле
Подставляя числовые значения напряжений, получаем Поскольку угол отрицательный, откладываем угол по часовой стрелке.

Задача 4.1.6: Значения главных напряжений определяют из решения кубического уравнения Коэффициенты , , называют…

1) инвариантами напряженного состояния; 2) упругими постоянными;

4) коэффициентами пропорциональности.

Решение:

1) Ответ верный. Корни уравнения – главные напряжения − определяются характером напряженного состояния в точке и не зависят от выбора исходной системы координат. Следовательно, при повороте системы осей координат коэффициенты



должны оставаться неизменными. Они называются инвариантами напряженного состояния.

2) Ответ неверный! Ошибка в определении термина. Упругие постоянные характеризуют свойства материала.

3) Ответ неверный! Напомним, что направляющие косинусы – это косинусы углов, которые образует нормаль с осями координат.

4) Ответ неверный! Термин не соответствует условию вопроса


Через любую точку напряженного тела можно провести, как правило, _____________ взаимно перпендикулярные площадки (-ок), на которых касательные напряжения будут равны нулю.

три
две
четыре
шесть

Решение:

На рисунке показано тело, нагруженное внешними силами, и элементарный объем с напряжениями на его гранях. При мысленном повороте элементарного объема можно отыскать такую его пространственную ориентацию, при которой касательные напряжения на гранях будут равны нулю. Эти грани и будут главными площадками.

Тема: Напряженное состояние в точке. Главные площадки и главные напряжения
Главными осями напряженного состояния называются …

Решение:

На рисунке показан элементарный объем, выделенный в окрестности произвольной точки нагруженного тела. Если при данной ориентации элементарного объема касательные напряжения на его гранях равны нулю, то оси x , y , z называются главными осями напряженного состояния. При переходе от одной точки к другой направления главных осей в общем случае изменяются.

Тема: Напряженное состояние в точке. Главные площадки и главные напряжения
Нормальные напряжения, действующие на главных площадках, называются …

Решение:
Три взаимно перпендикулярные площадки, на которых отсутствуют касательные напряжения, называются главными площадками. Нормальные напряжения, действующие на главных площадках, называются главными напряжениями. Максимальное из трех главных напряжений является одновременно наибольшим полным напряжением, действующим по множеству площадок, проходящих через данную точку. Минимальное из трех главных напряжений является наименьшим из множества полных напряжений.

Тема: Напряженное состояние в точке. Главные площадки и главные напряжения

Напряженное состояние элементарного объема, показанное на рисунке, − плоское. Верхняя грань элементарного объема является главной площадкой. Положение двух других главных площадок определяется углом

Решение:

На рисунке показан элементарный объем (вид сверху). Направление нормали к главной площадке определим по формуле где − угол между положительным направлением оси x и нормалью к одной из главных площадок. Для нашего случая Подставляя эти значения в формулу, получаем откуда а

Тема: Напряженное состояние в точке. Главные площадки и главные напряжения

На рисунке показан стержень, растянутый силами F , и элементарный объем выделенный гранями, параллельными плоскостям стержня. При повороте элементарного объема вокруг оси «u » на угол, равный 45 0 , напряженное состояние …

Решение:
На рисунке элементарный объем выделен главными площадками. Главные напряжения: Напряженное состояние – линейное. Вид напряженного состояния не зависит от пространственной ориентации элементарного объема и при любом угле поворота остается линейным.

4.2. Виды напряженного состояния

Задача 4.2.1: Стержень круглого сечения диаметром d испытывает деформации чистый изгиб и кручение. Напряженное состояние в точке В показано на рисунке…

1) ; 2) ; 3) ; 4) .

Решение:

1) Ответ неверный! Крутящий момент вызывает появление касательных напряжений в плоскости перпендикулярной оси стержня.

2) Ответ неверный! Направление касательного напряжения в точке В поперечного сечения должно соответствовать направлению крутящего момента в данном сечении.

3) Ответ верный. Секущими плоскостями, ориентированными вдоль и поперек оси стержня, выделим объемный элемент. В сечении стержня у заделки действуют изгибающий момент М и крутящий момент . От изгибающего момента М в точке В возникает нормальное растягивающее напряжение . Крутящий момент , действующий в плоскости, перпендикулярной оси стержня, вызывает касательное напряжение . Направление касательного напряжения должно быть согласовано с направлением крутящего момента. Поэтому напряженное состояние элемента на рисунке 4 соответствует напряженному состоянию в точке В .

4) Ответ неверный! От крутящего момента в точке В поперечного сечения возникает касательное напряжение . Направление касательного напряжения должно быть согласовано с направлением крутящего момента.

Задача 4.2.2: Стержень испытывает деформации растяжение и чистый изгиб. Напряженное состояние, которое возникает в опасной точке, называется…

1) плоским; 2) объемным; 3) линейным; 4) чистым сдвигом.

Решение:

1) Ответ неверный! При плоском напряженном состоянии одно значение главного напряжения равно нулю.

2) Ответ неверный! В опасной точке отлично от нуля только одно главное напряжение. При объемном напряженном состоянии отличны от нуля три главных напряжения.

3) Ответ верный. Опасные точки расположены бесконечно близко к верхней грани элемента. В них возникают только растягивающие нормальные напряжения от продольной силы и изгибающего момента. Эпюры распределения напряжений от каждого внутреннего силового фактора и результирующая эпюра показаны на рисунке.

Следовательно, в опасной точке будет линейное напряженное состояние.

4) Ответ неверный! При чистом сдвиге два главных напряжения равны, но противоположны по знаку, а третье равно нулю.

Задача 4.2.3: Напряженное состояние «чистый сдвиг» показано на рисунке…

1) ; 2) ; 3) ; 4) .

Решение:

1) Ответ неверный! На рисунке показано плоское напряженное состояние – двухосное растяжение.

2) Ответ неверный! Элемент находится в условиях плоского напряженного состояния – двухосного смешанного напряженного состояния.

3) Ответ верный.

Чистый сдвиг – напряженное состояние, когда на гранях выделенного элементарного объема действуют только касательные напряжения. Если элементарный объем повернуть на угол, равный , то касательные напряжения на его гранях (площадках) будут равны нулю, но появятся нормальные (главные) напряжения и . Таким образом, чистый сдвиг может быть реализован растяжением и сжатием в двух взаимно перпендикулярных направлениях напряжениями, равными по абсолютной величине.
Следовательно, напряженное состояние «чистый сдвиг» показано на рисунке 3.

4) Ответ неверный! Данный элемент испытывает линейное напряженное состояние.

Задача 4.2.4: Тип напряженного состояния, показанного на рисунке, называется…

1) линейным; 2) плоским; 3) объемным; 4) чистым сдвигом.

Решение:

1) Ответ верный. Тип напряженного состояния определяется в зависимости от значений главных напряжений. В примере одна грань свободна от касательных напряжений – это главная площадка. Нормальное напряжение, действующее на главной площадке, называют главным напряжением. В данном случае оно равно нулю. Используя формулу , найдем два других главных напряжения. После преобразований получим , . В соответствии с принятыми обозначениями имеем , . Два главных напряжения равны нулю. Следовательно, на рисунке показано линейное напряженное состояние.

2) Ответ неверный! При плоском напряженном состоянии одно главное напряжение равно нулю. В данном случае два главных напряжения равны нулю.

3) Ответ неверный! При объемном напряженном состоянии В данном случае два главных напряжения равны нулю. Поэтому данное напряженное состояние не является объемным.

4) Ответ неверный! При чистом сдвиге , . Расчеты показывают, что для данного случая это неверно.

Задача 4.2.5: Напряженное состояние при значениях , , называют…

1) объемным; 2) чистым сдвигом; 3) плоским; 4) линейным.

Решение:

1) Ответ неверный! При объемном напряженном состоянии отличны от нуля все три главных напряжения.

2) Ответ неверный! При чистом сдвиге одно значение главного напряжения равно нулю, а два других равны по величине, но противоположны по знаку.

3) Ответ верный. Тип напряженного состояния определяется значениями главных напряжений. В случае, когда все три главных напряжения отличны от нуля, имеем объемное напряженное состояние. Если одно главное напряжение равно нулю - плоское напряженное состояние, а когда два равны нулю – линейное. Следовательно, в данном примере будет плоское напряженное состояние.

4) Ответ неверный! При линейном напряженном состоянии только одно главное напряжение отлично от нуля.

Задача 4.2.6: На гранях элементарного объема (см. рисунок) действуют напряжения заданные в МПа . Напряженное состояние в точке …

1) линейное; 2) плоское (чистый сдвиг); 3) плоское; 4) объемное.

Решение:

1) Ответ неверный! Фронтальная грань элементарного объема свободна от касательных напряжений. Это означает, что данная грань является главной площадкой и одно из трех главных напряжений равно (-50МПа ). Два других главных напряжения определите по формуле

2) Ответ неверный! Напомним, что при чистом сдвиге одно из главных напряжений равно нулю. Два других равны по абсолютной величине и противоположны по знаку.

3) Ответ верный. Передняя грань элементарного объема свободна от касательных напряжений. Это означает, что она является главной площадкой и одно из трех главных напряжений равно (-50 МПа ). Два других главных напряжения определим по формуле

Поставляя числовые значения, получаем


Присваивая главным напряжениям индексы, имеем:

Таким образом, напряженное состояние плоское (двухосное сжатие).

4) Ответ неверный! Фронтальная грань элементарного объема свободна от касательных напряжений. Это означает, что данная грань является главной площадкой и одно из трех главных напряжений равно (-50 МПа ). Два других главных напряжения можно определить по формуле
Результаты расчетов покажут, какое напряженное состояние изображено на рисунке.



Напряженное состояние элементарного объема, показанное на рисунке, является – …

Решение:
Главные напряжения являются корнями кубического уравнения
где:



В нашем случае , и кубическое уравнение принимает вид откуда
Таким образом, напряженное состояние элементарного объема линейное (одноосное растяжение).

Тема: Виды напряженного состояния

Стальной кубик вставлен без зазора в жесткую обойму (см. рис.). На верхнюю грань кубика действует равномерно распределенное давление интенсивности р . Поверхности кубика и обоймы абсолютно гладкие. Напряженное состояние кубика показано на рисунке …

в
г
б
а

Решение:

Силы трения между абсолютно гладкими поверхностями кубика и обоймы отсутствуют. Поэтому касательные напряжения на гранях кубика равны нулю, и все грани являются главными площадками. В процессе сжатия ребра кубика, направленные вдоль осей x и y , стремятся удлиниться. Удлинение вдоль оси y происходит свободно. Удлинение вдоль оси x невозможно (мешает жесткая обойма). В связи с невозможностью удлинения вдоль оси x , со стороны вертикальных плоскостей обоймы на кубик действуют усилия в виде равномерно распределенных по площади нагрузок с некоторой интенсивностью . Интенсивности р и следует рассматривать как главные напряжения. Таким образом, из трех главных напряжений одно (по фронтальной грани кубика). Поэтому напряженное состояние кубика плоское (рис. в ).

Тема: Виды напряженного состояния

На рисунке показан стержень, работающий на кручение с растяжением. Напряженное состояние в точке К является – …

Решение:

В точке К поперечного сечения действует нормальное напряжение от силы F . Эпюра касательных напряжений от крутящего момента показана на рисунке 1. В угловых точках Поэтому напряженное состояние в точке К − линейное (одноосное растяжение, рис. 2).

Тема: Виды напряженного состояния

Напряженное состояние элементарного объема является – …

Решение:

Верхняя грань элементарного объема является главной площадкой, поэтому одно главное напряжение равно Два других главных напряжения вычисляем по формуле
В данном случае (см. рис.) Подставляя в формулу, получаем
Присваивая главным напряжениям соответствующие индексы, получаем
Напряженное состояние − объемное.

Тема: Виды напряженного состояния

На тело действует равномерно распределенное по поверхности давление р (см. рис.). Напряженное состояние элементарного объема является – …

Решение:

Если на тело действует равномерно распределенное по поверхности давление р (см. рис.), то напряженное состояние в любой точке тела объемное (трехосное сжатие). При этом при любой пространственной ориентации элементарного объема.

Напряжение – численная мера распределения внутренних сил по плоскости поперечного сечения. Его используют при исследовании и определении внутренних сил любой конструкции.

Выделим на плоскости сечения площадку A ; по этой площадке будет действовать внутренняя сила R .

Величина отношения R / A = p ср называется средним напряжением на площадке A . Истинное напряжение в точке А получим устремив A к нулю:

Нормальные напряжения возникают, когда частицы материала стремятся отдалиться друг от друга или, наоборот, сблизиться. Касательные напряжения связаны со сдвигом частиц по плоскости рассматриваемого сечения.

Очевидно, что
. Касательное напряжение в свою очередь может быть разложено по направлениям осейx и y (τ z х , τ z у ). Размерность напряжений – Н/м 2 (Па).

При действии внешних сил наряду с возникновением напряжений происходит изменение объема тела и его формы, т. е. тело деформируется. При этом различают начальное (недеформированное) и конечное (деформированное) состояния тела.

16.Закон парности касательных напряжений

Касат. напряжение на 2-ух взаимно перпендик. площ. направлены к ребру или от ребра и равны по величине

17.Понятие о деформациях. Мера линейной, поперечной и угловой деформации

Деформац – наз. взаимное перемещение точек или сечений тела по сравн с полож-ями тела которые они занимали до приложения внеш сил

бывают: упругие и пластические

а) линейная деформация

мерой явл относительное удлинение эпсила =l1-l/l

б) поперечная деф

мерой явл. относительное сужение эпсила штрих=|b1-b|/b

18.Гипотеза плоских сечений

Основные гипотезы (допущения): гипотеза о не надавливании продольных волокон: волокна, параллельные оси балки, испытывают деформацию растяжения – сжатия и не оказывают давления друг на друга в поперечном направлении; гипотеза плоских сечений : сечение балки, плоское до деформации, остается плоским и нормальным к искривленной оси балки после деформации. При плоском изгибе в общем случае возникают внутренние силовые факторы : продольная сила N, поперечная сила Q и изгибающий момент М. N>0, если продольная сила растягивающая; при М>0 волокна сверху балки сжимаются, снизу растягиваются. .

Слой, в котором отсутствуют удлинения, называется нейтральным слоем (осью, линией). При N=0 и Q=0, имеем случай чистого изгиба. Нормальные напряжения:
, - радиус кривизны нейтрального слоя, y - расстояние от некоторого волокна до нейтрального слоя.

19.Закон Гука (1670). Физический смысл входящих в него величин

Он установил связь между напряжением, растяжением и продольной деформацией.
где Е – коэффициент пропорциональности (модуль упругости материала).

Модуль упругости характеризует жёсткость материала, т.е. способность сопротивляться деформациям. (чем больше Е, тем менее растяжимый материал)

Потенциальная энергия деформации:

Внешние силы, приложенные к упругому телу, совершают работу. Обозначим её через А. В результате этой работы накапливается потенциальная энергия деформированного тела U. Кроме того, работа идёт на сообщение скорости массе тела, т.е. преобразуется в кинетическую энергию К. Баланс энергии имеет вид А = U + К.

Зная компоненты напряжений в любой точке пластинки в условиях плоского напряженного состояния или плоской деформации, можно найти из уравнений статики напряжения на любой наклонной по отношению к осям х и у плоскости (площадке), проходящей через эту точку перпендикулярно пластинке. Обозначим через Р некоторую точку в напряженной пластинке и допустим, что компоненты напряжения известны (рис. 12). На малом расстоянии от Р проведем плоскость параллельную оси так, чтобы эта плоскость вместе с координатными плоскостями вырезала из пластинки очень малую треугольную призму Поскольку напряжения изменяются по объему тела непрерывно, то при уменьшении размеров вырезанного элемента напряжение, действующее на площадке будет стремиться к напряжению на параллельной площадке, проходящей через точку Р.

При рассмотрении условий равновесия малой треугольной призмы объемными силами можно пренебречь как величинами высшего порядка малости. Подобным образом, если вырезанный элемент очень мал, можно пренебречь изменениями напряжений по граням и предположить, что напряжения распределены равномерно. Тогда силы, действующие на треугольную призму, можно определить путем умножения компонент напряжений на площади граней. Пусть - направление нормали к плоскости а косинусы углов между нормалью и осями х и у обозначаются следующим образом:

Тогда, если через А обозначить площадь грани элемента, то площади двух других граней будут .

Если обозначить через X и компоненты напряжений, действующих на грани то условия равновесия призматического элемента приводят к следующим соотношениям:

Таким образом, компоненты напряжений на любой площади, определяемой направляющими косинусами и можно легко найти из соотношений (12), если известны три компоненты напряжения в точке Р.

Обозначим через а угол между нормалью к площадке и осью х, так что тогда из соотношений (12) для нормальной и касательной компоненты напряжений на площадке получим формулы:

Очевидно, угол можно выбрать таким образом, чтобы касательное напряжение на площадке стало равным нулю. Для этого случая получаем

Из этого уравнения можно найти два взаимно перпендикулярных направления, для которых касательные напряжения на соответствующих площадках равны нулю. Эти направления называются главными, а соответствующие нормальные напряжения - главными нормальными напряжениями.

Если за главные направления принять направления осей х и у, то компонента равна нулю и формулы (13) принимают более простой вид

Изменение компонент напряжений а и в зависимости от угла а можно легко представить графически в виде диаграммы в координатах а и Каждой ориентации площадки соответствует точка на этой диаграмме, координаты которой представляют собой значения напряжений действующих на этой площадке. Такая диаграмма представлена на рис. 13. Для площадок, перпендикулярных к главным направлениям, мы получаем точки А и В с абсциссами соответственно. Теперь можно

доказать, что компоненты напряжения для любой площадки определяемой углом а (рис. 12), будут представляться координатами некоторой точки на окружности, для которой отрезок А В является диаметром. Чтобы найти эту точку, достаточно отмерить от точки А в том же направлении, в каком измеряется угол а на рис. 12, дугу, отвечающую углу . Для координат построенной таким образом точки D из рис. 13 получим

Сравнение с формулами (13) показывает, что координаты точки D дают численные значения компонент напряжения на площадке определяемой углом а. Чтобы привести в соответствие знак касательной компоненты, примем, что положительные значения откладываются вверх (рис. 13, а), и будем считать касательные напряжения положительными, когда они дают момент, действующий по направлению часовой стрелки, как это имеет место на гранях элемента (рис. 13, б). Касательные напряжения противоположного направления, например действующие на гранях элемента, считаются отрицательными.

Будем менять ориентацию площадки вращая ее вокруг оси, перпендикулярной плоскости (рис. 12) по направлению часовой стрелки так, что угол а будет изменяться от 0 до при этом точка D на рис. 13 будет перемещаться от А к В. Таким образом, нижняя половина круга определяет изменение напряжений для всех значений а в этих пределах. В свою очередь верхняя часть круга дает напряжения для интервала

Продолжая радиус до точки (рис. 13), т. е. беря угол равным вместо , получаем напряжения на площадке, перпендикулярной площадке (рис. 12). Отсюда видно, что касательные напряжения на двух взаимно перпендикулярных площадках численно друг другу равны, как это и было доказано ранее. Что касается нормальных напряжений, то мы видим из

рисунка, что т. е. сумма нормальных напряжений, действующих на двух взаимно перпендикулярных площадках, при изменении угла а остается постоянной.

Максимальное касательное напряжение ттах дается на диаграмме (рис. 13) максимальной ординатой окружности, т. е. равно радиусу окружности. Отсюда

Оно действует на площадке, для которой т. е. на площадке, нормаль к которой делит пополам угол между двумя главными направлениями.

Соответствующая диаграмма может быть построена и для случая, когда одно или оба главных напряжения отрицательны, т. е. для случая сжатия. Нужно только величину сжимающего напряжения откладывать в сторону отрицательных абсцисс. На рис. 14, а изображена диаграмма для случая, когда оба главных напряжения отрицательны, на рис. 14, б построена диаграмма для случая чистого сдвига.

Из рис. 13 и 14 видно, что напряжение в любой точке можно разложить на две части. Одна из них представляет собой двухосное растяжение (или сжатие), две компоненты которого равны между собой и по величине определяются абсциссой центра круга Мора.

Другая часть представляет собой чистый сдвиг с касательным напряжением, величина которого дается радиусом круга. При наложении нескольких плоских напряженных состояний равномерные растяжения (или сжатия) можно складывать друг с другом алгебраически. При наложении состояний чистого сдвига нужно учитывать направления плоскостей, на которые действуют соответствующие касательные напряжения. Можно показать, что при наложении друг на друга двух напряженных состояний чистого сдвига, для которых плоскости максимального касательного напряжения находятся под углом друг к другу, получающаяся в результате система сведется к другому случаю чистого сдвига. Например, рис. 15 показывает как определять напряжение, производимое двумя состояниями чистого сдвига с величинами касательных напряжений и на площадке, положение которой определяется углом Первое из этих состояний относится к плоскостям (рис. 15, а), а второе - к плоскостям, наклоненным к плоскостям

  • 4. Основные понятия о деформируемом теле: линейные и угловые перемещения и деформации; упругость, пластичность, хрупкость; изотропия и анизотропия.
  • 5. Метод сечений для определения внутренних усилий. Примеры использования метода сечений.
  • 6. Напряжение в точке. Полное, нормальное, касательное напряжения. Размерности напряжения.
  • 19. Удельная потенциальная энергия линейно-упругого материала при одноосном напряжённом состоянии и при чистом сдвиге.
  • 21. Поперечный изгиб прямого бруса. Вывод дифференциальных зависимостей между интенсивностью внешней поперечной нагрузки, внутренней поперечной силой и внутренним изгибающим моментом.
  • 24. Вывод формул для определения осевых моментов инерции прямоугольника, треугольника, круга, кольца.
  • 25. Преобразование моментов инерции плоской фигуры при параллельном переносе осей координат.
  • 26. Преобразование моментов инерции плоской фигуры при повороте осей координат. Главные моменты инерции. Главные центральные оси плоской фигуры. Моменты инерции плоских симметричных фигур.
  • 28. Прямой чистый изгиб прямого бруса. Обобщение задачи об определении напряжений в брусьях с симметричными поперечными сечениями и в брусьях с несимметричными поперечными сечениями.
  • 29. Условия прочности при прямом чистом изгибе бруса. Три типа задач по расчёту на прочность. Привести числовые примеры. Жёсткость бруса при изгибе.
  • 30. Рациональные формы поперечных сечений упругих балок (прямых брусьев) при прямом чистом изгибе. Привести примеры.
  • 32. Прямой поперечный изгиб балки (прямого бруса). Вывод формулы для определения касательных напряжений, возникающих в поперечных сечениях двутавровой балки с использованием формулы д.И.Журавского.
  • 45. Формула Эйлера для критической силы при различных способах опорных закреплений бруса. Приведённая длина бруса.
  • 6. Напряжение в точке. Полное, нормальное, касательное напряжения. Размерности напряжения.

    Напряжение – мера распределения внутренних сил по сечению.

    Где
    - внутренняя сила, выявленная на площадке
    .

    Полное напряжение
    .

    Нормальное напряжение – проекция вектора полного напряжения на нормаль обозначается через σ.
    , где Е – модуль упругости I рода, ε – линейная деформация. Нормальное напряжения вызывается только изменением длин волокон, направлением их действий, а угол поперечных и продольных волокон не искажается.

    Касательное напряжение – составляющие напряжения в плоскости сечения.
    , где
    (для изотропного материала) – модуль сдвига (модуль упругости II рода), μ – коэффициент Пуассона (=0,3), γ – угол сдвига.

    7. Закон Гука для одноосного напряжённого состояния в точке и закон Гука для чистого сдвига. Модули упругости первого и второго рода, их физический смысл, математический смысл и графическая интерпретация. Коэффициент Пуассона.

    - закон Гука для одноосного напряжённого состояния в точке.

    Е – коэффициент пропорциональности (модуль упругости I рода). Модуль упругости является физической константой материала и определяется экспериментально. Величина Е измеряется в тех же единицах, что и σ, т.е. в кГ/см 2 .

    - закон Гука для сдвига.

    G– модуль сдвига (модуль упругости II рода). Размерность модуляGтакая же, как и у модуля Е, т.е. кГ/см 2 .
    .

    μ – коэффициент Пуассона (коэффициент пропорциональности).
    . Безразмерная величина, характеризующая свойства материала и определяющаяся экспериментально и лежит в интервале от 0,25 до 0,35 и не могут превышают 0,5 (для изотропного материала).

    8. Центральное растяжение (сжатие) прямого бруса. Определение внутренних продольных сил методом сечений. Правило знаков для внутренних продольных сил. Привести примеры расчёта внутренних продольных сил.

    Брус испытывает состояние центрального растяжения (сжатия) в том случае, если в его поперечных сечениях возникают центральные продольные силы N z (т.е. внутренняя сила, линия действия которой направлена по осиz), а остальные 5 силовых факторов равны нулю (Q x =Q y =M x =M y =M z =0).

    Правило знаков для N z: истинная растягивающая сила – «+», истинная сжимающая сила – «-».

    9. Центральное растяжение (сжатие) прямого бруса. Постановка и решение задачи об определении напряжений в поперечных сечениях бруса. Три стороны задачи.

    Постановка: Прямой брус из однородного материала, растянутый (сжатый) центральными продольными силами N. Определить напряжение, возникающее в поперечных сечениях бруса, деформации и перемещения поперечных сечений бруса в зависимости от координатzэтих сечений.

    10. Центральное растяжение (сжатие) прямого бруса. Определение деформаций и перемещений. Жёсткость бруса при растяжении (сжатии). Привести примеры соответствующих расчётов.

    Центральное напряжение (сж.) прямого бруса см. в вопросе 8.

    .

    При центральном растяжении (сж.) бруса в поперечном направлении в сечении возникает только нормальное напряжение σ z , постоянное во всех точках поперечного сечения и равноеN z /F.
    , гдеEF– жёсткость бруса при растяжении (сжатии). Чем больше жёсткость бруса, тем меньше деформируется бус при одной и той же силе. 1/(EF) – податливость бруса при растяжении (сжатии).

    11. Центральное растяжение (сжатие) прямого бруса. Статически неопределимые системы. Раскрытие статической неопределимости. Влияние температурного и монтажного факторов. Привести примеры соответствующих расчётов.

    Центральное напряжение (сж.) прямого бруса см. в вопросе 8.

    Если число линейно-независимых уравнений статики меньше числа неизвестных, входящих в систему этих уравнений, то задача по определению этих неизвестных становится статически неопределимой.
    (На сколько удлинится одна часть, на столько сожмётся вторая).

    Нормальные условия - 20º С.
    .f(σ,ε,tº,t)=0 – функциональная зависимость между 4 параметрами.

    12. Опытное изучение механических свойств материалов при растяжении (сжатии). Принцип Сен-Венана. Диаграмма растяжения образца. Разгрузка и повторное нагружение. Наклёп. Основные механические, прочностные и деформационные характеристики материала.

    Механические свойства материалов вычисляют с помощью испытательных машин, которые бывают рычажными и гидравлическими. В рычажной машине усилие создаётся при помощи груза, действующего на образец через систему рычагов, а в гидравлической – с помощью гидравлического давления.

    Принцип Сен-Венана: Характер распределения напряжения в поперечных сечениях достаточно удалённых (практически на расстояния, равные характерному поперечному размеру стержня) от места приложения нагрузок, продольных сил не зависит от способа приложения этих сил, если они имеют один и тот же статический эквивалент. Однако в зоне приложения нагрузок закон распределения напряжения может заметно отличаться от закона распределения в достаточно удалённых сечениях.

    Если испытуемый образец, не доводя до разрушения, разгрузить, то в процессе разгрузки зависимость между силой Р и удлинением Δlобразец получит остаточное удлинение.

    Если образец был нагружен на участке, на котором соблюдается закон Гука, а затем разгружен, то удлинение будет чисто упругим. При повторном нагружении пропадёт промежуточная разгрузка.

    Наклёп (нагартовка) – явление повышения упругих свойств материала в результате предварительного пластического деформирования.

    Предел пропорциональности – наибольшее напряжение, до которого материал следует закону Гука.

    Предел упругости – наибольшее напряжение, до которого материал не получает остаточных деформаций.

    Предел текучести – напряжение, при котором происходит рост деформации без заметного увеличения нагрузки.

    Предел прочности – максимальное напряжение, которое может выдержать образец, не разрушаясь.

    13. Физический и условный пределы текучести материалов при испытании образцов на растяжение, предел прочности. Допускаемые напряжения при расчёте на прочность центрально растянутого (сжатого) бруса. Нормативный и фактический коэффициенты запаса прочности. Привести числовые примеры.

    В тех случаях, когда на диаграмме отсутствует явно выраженная площадка текучести, за предел текучести принимается условно величина напряжения, при котором остаточная деформация ε ост =0,002 или 0,2%. В некоторых случаях устанавливается предел ε ост =0,5%.

    max|σ z |=[σ].
    ,n>1(!) – нормативный коэффициент запаса прочности.

    - фактический коэффициент запаса прочности.n>1(!).

    14. Центральное растяжение (сжатие) прямого бруса. Расчёты на прочность и жёсткость. Условие прочности. Условие жёсткости. Три типа задач при расчёте на прочность.

    Центральное напряжение (сж.) прямого бруса см. в вопросе 8.

    max|σ z | растяж ≤[σ] растяж;max|σ z | сжатия ≤[σ] сжатия.

    15.Обобщённый закон Гука для трёхосного напряжённого состояния в точке. Относительная объёмная деформация. Коэффициент Пуассона и его предельные значения для однородного изотропного материала.

    ,
    ,
    . Сложив эти уравнения, получим выражение объёмной деформации:
    . Это выражение позволяет определить предельное значение коэффициента Пуассона для любого изотропного материала. Рассмотрим случай, когда σ x =σ y =σ z =р. В этом случае:
    . При положительном р величина θ должна быть также положительной, при отрицательном р изменение объёма будет отрицательным. Это возможно только в том случае, когда μ≤1/2. Следовательно, значение коэффициента Пуассона для изотропного материала не может превышать 0,5.

    16. Соотношение между тремя упругими постоянными для изотропного материала (без вывода формулы).

    ,
    ,
    .

    17. Исследование напряжённо-деформированного состояния в точках центрально-растянутого (сжатого) прямого бруса. Закон парности касательных напряжений.

    ,
    .

    - закон парности касательных напряжений.

    18. Центральное растяжение (сжатие) бруса из линейно-упругого материала. Потенциальная энергия упругой деформации бруса и её связь с работой внешних продольных сил, приложенных к брусу.

    А=U+K. (В результате работы накапливается потенциальная энергия деформированного телаU, кроме того, работа идёт на совершение скорости массе тела, т.е. преобразуется в кинетическую энергию).

    Если центральное растяжение (сжатие) бруса из линейно-упругого материала производится очень медленно, то скорость перемещения центра масс тела будет весьма малой. Такой процесс нагружения называется статическим. Тело в любой момент находится в состоянии равновесия. В этом случае А=U, и работа внешних сил целиком преобразуется в потенциальную энергию деформации.
    ,
    ,
    .

    "