Домой / Браузеры / Как расчет смешанных цепей постоянного тока. Расчет простых электрических цепей. Дополнительные методы расчета цепей

Как расчет смешанных цепей постоянного тока. Расчет простых электрических цепей. Дополнительные методы расчета цепей

Законы Кирхгофа.

∑I=0

∑E=∑IR

Порядок расчета

  1. Произвольно выбираем направление тока в ветвях.
  2. Произвольно выбираем направление обхода контуров.
  3. Зная полярность источников, проставляем направление ЭДС.
  4. Составляем уравнения по первому закону Кирхгофа. Их должно быть но одно меньше, чем узлов.
  5. Составляем уравнения по второму закону Кирхгофа из расчета, что общее число уравнений должно быть равно числу неизвестных токов.
  6. Решаем систему уравнений и определяем неизвестные токи. Если в результате решения какой-либо ток окажется со знаком «-», то направление его противоположно выбранному.

Приведем пример.

Дано:

  1. 1 =r 2 =0;
  2. 1 =0,3 Ом;
  3. 2 =1 Ом;
  4. 3 =24 Ом;

Е 1 =246 В;

Е 2 =230В

Найти:

I 1 ,I 2 ,I 3 .

Решение:

Итак, на схеме рисуем направления токов (1), согласно этим направлениям рисуем направления обхода контуров (2), согласно полярности источников питания ставим направления ЭДС (3).

Согласно первому закону Кирхгофа:

I 1 -I 2 -I 3 =0 → -I 2 =I 3 -I 1

Теперь составляем уравнения по второму закону Кирхгофа:

E 1 =I 1 R 1 +I 3 R 3

Е 2 =-I 2 R 2 +I 3 R 3

Получили систему из трех уравнений. Решаем.

E 2 =(I 3 -I 1)R 2 +I 3 R 3

230=I 3 (1+R 3)-I 1 =25I 3 -I 1 → I 1 = 25I 3 -230

E 1 =I 1 R 1 +I 3 R 3 =(25I 3 -230)R 1 +I 3 R 3

246=0,3(25I 3 -230)+24I 3

246=7,5I 3 -69+24I 3

31,5I 3 =315

I 3 =10A

I 1 =25∙10-230=20A

I 2 =I 1 -I 3 =20-10=10A

2. Метод контурных токов

Этот метод основан на законе Кирхгофа

  1. Произвольно выбираем направления контурных токов (рис.2)
  2. Составляем уравнения по второму закону Кирхгофа.

E 1 -E 2 =I 1 (R 1 +R 2)-I 2 R 2

E 2 =I 2 (R 2 +R 3)-I 1 R 2

246-230=I 1 (0,3+1)-I 2 → 16=1,3I 1 -I 2 → I 2 =1,3I 1 -16

230=25(1,3I 1 -16)-I 1

31,5I 1 =630

I 1 =20A

I 2 =1,3∙20-16=10A

3. Определяем истинные токи.

I 1 =I 1 =20A

I 2 =I 1 -I 2 =10A

I 3 =I 2 =10A

3. Метод двух узлов

Этот метод применим для схем, имеющих два узла

  1. Выбираем произвольно направления токов в ветвях в одну и ту-же сторону (см. рис.3 - стрелки со штрихами).
  2. Определяем проводимости ветвей:

Q 1 =1/R 1 =1/0,3=3,33 Сим.

Q 2 =1/R 2 =1 Сим.

Q 3 =1/R 3 =1/24=0,0416 Сим.

  1. Определяем напряжение между двумя узлами по формуле:

U=∑E q /∑ ar q=(E 1 +E 2 q 2)/(q 1 +q 2 +q 3)=(246∙3,31+230)/4,3716=240 В

  1. Определяем токи в ветвях

I=(E-U)q

I 1 =(E 1 -U)q 1 =(246-240)3,33=20A

I 2 =(E 2 -U)q 2 =230-240=-10A

I 3 =-Uq 3 =240∙0,0416=-10А

Так как, значения I 2 и I 3 получились отрицательными, то эти токи будут противоположными по направлению (на рисунке показаны жирные сплошные стрелки).

4. Метод наложения или метод суперпозиции

Метод основан на том, что любой ток в цепи создается совместным действием всех источников питания. Поэтому можно рассчитать частичные токи от действия каждого источника питания отдельно, а затем, найти истинные токи как арифметическую составляющую частичных.

Решение

1. Рис. 4. Е 2 =0; r 2 ≠0

R э =R 2 R 3 /(R 2 +R 3)+R 1 =24/25+0,3=0,96+0,3=1,26 Ом

I’ 1 =E 1 /R э =246/1,26=195,23 Ом

U ab =I’ 1 R 23 =195,23∙0,96=187,42 В

I’ 2 =U ab /R 2 =187,42 A

I’ 3 = U ab /R 3 =187,42/24=7,8 A

2. Рис. 5. E 1 =0; R 1 ≠0

R э =R 1 R 3 /(R 1 +R 3)+R 2 =0,3∙24/24,3+1=0,29+1=1,29 Ом

I” 2 =E 2 /R э =230/1,29=178,29 A

U ab =I” 2 R 13 =178,29∙0,29=51,7 В

I” 1 =U ab /R 1 =51,7/0,3=172,4 A

I” 3 =U ab /R 3 =51,7/24=2,15 A

3. Определяем истинные токи.

I 1 =I’ 1 -I” 1 =195,23-172,4=22,83 A

I 2 =I’ 2 -I” 2 =187,42-178,29=9,13 A

I 3 =I’ 3 -I” 3 =7,8-2,15=5,65 A

В зависимости от числа источников ЭДС (питания) в схеме, ее топологии и других признаков цепи анализируются и рассчитываются различными методами. При этом известными обычно являются ЭДС (напряжения) источников электроэнергии и параметры цепи, расчетными - напряжения, токи и мощности.

В этой главе мы ознакомимся с методами анализа и расчета цепей постоянного тока различной сложности.

Расчет цепей с одним источником питания

Когда в цепи имеется один активный элемент (источник электроэнергии), а другие являются пассивными, например резисторы /? t , R 2 ,..., то цепи анализируются и рассчитываются методом преобразования схем , сущность которого заключается в преобразовании (свертке) исходной схемы в эквивалентную и последующем разворачивании, в процессе которых определяются искомые величины. Проиллюстрируем этот метод для расчета цепей с последовательным, параллельным и смешанным соединением резисторов.

Цепь с последовательным соединением резисторов. Рассмотрим этот вопрос на следующем качественном примере. От идеализированного источника ЭДС Е (R 0 = 0), на выходных зажимах которого имеется напряжение U, т.е. когда E=U , через последовательно соединенные сопротивления R { , R 2 ,..., R n питается нагрузка (приемник) с сопротивлением R H (рис. 2.1, а).

Рис . 2.1

Требуется найти напряжение, сопротивление и мощность цепи эквивалентной заданной, изображенной на рис. 2.1, б, делая соответствующие выводы и обобщения.

Решение

А. При известных сопротивлениях и токе напряжения на отдельных элементах цепи, согласно закону Ома, находились бы так:

Б. Общее напряжение (ЭДС) цепи, согласно второму закону Кирхгофа, запишется так:



Г. Умножив все члены (2-2) на ток / или (2-5) на Р, будем иметь откуда

В. Разделив все члены (2-2) на ток /, получим где

Формулы (2-3), (2-5), (2-7) показывают, что в цепи с одним источником питания и последовательным соединением сопротивлений эквивалентные напряжение, сопротивление и мощность равны арифметическим суммам напряжений, сопротивлений и мощностей элементов цепи.

Приведенные соотношения и выводы свидетельствуют о том, что исходную схему по рис. 2.1, а с сопротивлениями /? 2 , R„ можно заменить (свернуть) простейшей по рис. 2.1, б с эквивалентным сопротивлением R 3 , определяемым по выражению (2-5).

а) для схемы по рис. 2.1, б справедливы соотношения U 3 = U = RI , где R = R 3 + R u . Исключив из них ток /, получим выражение

которое показывает, что напряжение U 3 на одном из сопротивлений цепи, состоящей из двух, соединенных последовательно, равно произведению общего напряжения U на отношение сопротивления этого участка R 3 к общему сопротивлению цепи R. Исходя из этого

б) ток и напряжения в цени но рис. 2.2, б можно записать в различных вариантах:

Решенные задачи

Задача 2.1. Чему равны сопротивление, напряжение и мощность цепи по рис. 2.1, а, если I = 1 A, R x = 1 Ом, Д 2 = 2 Ом, = 3 Ом, R u = 4 Ом?

Решение

Напряжения на резисторах, очевидно, будут равны: U t =IR^ = 1 1 = 1 В, U 2 = IR 2 = = 1 2 = 2 В, U n = /Л я = 1 3 = 3 В, t/ H = ZR H = 1 4 = 4 В. Эквивалентное сопротивление цепи: R 3 = R { + /? 9 + R n = 1 + 2 + 3 = 6 Ом. Сопротивление, напряжение и мощность цепи: /? = &, + /?„ = 6 + 4= 10 Ом; U= U { + U 2 + U„+U n = 1+2 + 3 + 4 = 10 В, или U=IR = = 1 10= 10 В; Р= Ш= 10 - 1 = 10 Вт, или Р= UJ+ U 2 I + U n I+ U U I= 11+21+31 + + 4 1 = 10 Вт, или Р = PR X + PR 2 + PR a + PR n = 12 1 + 12 2 + 12 3 + 12 4 = 10 Вт, или Р = Щ /R x +U? 2 /R 2 +UZ /R n +1/2 /R n = 12 / 1 + 22/2 + 32/3 + 42 /4 = 10 Вт.

Задача 2.2. В цепи по рис. 2.1, а известны: U = МО В, R { = Ом, R 2 = 2 Ом, = = 3 Ом, R H = 4 Ом. Определить U 2 .

Решение

R = /?! + /?, + Л 3 + Л 4 = Л,+ Л Н = 1+2 + 3 + 4 = 6 + 4 = 10 Ом, 1=11/R= 110/10 = = 11 А, // 2 = Л? 2 = 11 2 = 22 В или U 2 =UR 2 /R = 110 2 / 10 = 22 В.

Задачи, требующие решения

Задача 2.3. В цепи по рис. 2.1, а известны: U = МО В, R^ = Ом, R 2 = 2 Ом, R n = = 3 Ом, R u = 4 Ом. Определить Р„.

Задача 2.4. В цепи по рис. 2.1, б известны: U= 110 В, U H = 100 В, = 2 Ом. Определить Р э.

Задача 2.5. В цепи по рис. 2.1,6 известны: U= 110 В, R t = 3 Ом, Д н = 2 Ом. Определить }