Домой /  Интернет / Что такое полоса пропускания канала. Полоса пропускания и пропускная способность. Ширина полосы пропускания

Что такое полоса пропускания канала. Полоса пропускания и пропускная способность. Ширина полосы пропускания

Полоса пропускания

О полосе пропускания в цифровой технике см. Скорость передачи информации

Полоса пропускания (прозрачности) - диапазон частот , в пределах которого амплитудно-частотная характеристика (АЧХ) акустического, радиотехнического, оптического или механического устройства достаточно равномерна для того, чтобы обеспечить передачу сигнала без существенного искажения его формы. Иногда, вместо термина "полоса пропускания", используют термин "эффективно передаваемая полоса частот (ЭППЧ)". В ЭППЧ сосредоточена основная энергия сигнала (не менее 90%). Этот диапазон частот устанавливается для каждого сигнала экспериментально в соответствии с требованиями качества.

Основные параметры полосы пропускания

Основные параметры, которые характеризуют полосу пропускания частот - это ширина полосы пропускания и неравномерность АЧХ в пределах полосы.

Ширина полосы

Ширина полосы пропускания - полоса частот, в пределах которой неравномерность частотной характеристики не превышает заданной.

Ширина полосы обычно определяется как разность верхней и нижней граничных частот участка АЧХ, на котором амплитуда колебаний (или для мощности) от максимальной. Этот уровень приблизительно соответствует −3 дБ .

Ширина полосы пропускания выражается в единицах частоты (например, в Гц).

Расширение полосы пропускания позволяет передать большее количество информации.

Неравномерность АЧХ

Неравномерность АЧХ характеризует степень её отклонения от прямой, параллельной оси частот.

Ослабление неравномерности АЧХ в полосе улучшает воспроизведение формы передаваемого сигнала.

Различают:

  • Абсолютную полосу пропускания: 2Δω = Sa
  • Относительную полосу пропускания: 2Δω/ωo = So

Конкретные примеры

В теории антенн полоса пропускания - диапазон частот, при которых антенна работает эффективно, обычно окрестность центральной (резонансной) частоты. Зависит от типа антенны, ее геометрии. На практике полоса пропускания обычно определяется по уровню КСВ (коэффициента стоячей волны). КСВ МЕТР

Поскольку даже самый лучший монохроматичный лазер всё равно излучает некоторый спектр длин волн, дисперсия приводит к уширению импульсов при распространении по волокну и тем самым порождает искажения сигналов. При оценке этого пользуются термином полоса пропускания. Измеряется полоса пропускания (в данном случае) в МГц/км.

Из определения полосы пропускания видно, что дисперсия накладывает ограничение на дальность передачи и на верхнюю частоту передаваемых сигналов.

Требования к П. п. различных устройств определяются их назначением (например, для телефонной связи требуется П. п. 300-3400 гц, для высококачественного воспроизведения музыкальных произведений 30-16000 гц, а для телевизионного вещания - шириной до 8 Мгц) .

См. также

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Полоса пропускания" в других словарях:

    Энциклопедический словарь

    полоса пропускания - 1. Ширина частотного спектра сигнала между верхней и нижней частотами среза 2. Интервал частот, заключенный между двумя частотами среза, в пределах которого модуль коэффициента передачи системы составляет не менее 0,707 от максимального значения… … Справочник технического переводчика

    Диапазон частот, в пределах которого зависимость амплитуды колебаний на выходе акустического, радиотехнического или оптического устройства от их частоты достаточно слаба, чтобы обеспечить передачу сигнала без существенного искажения. Ширину… … Большой Энциклопедический словарь

    Область частот, в к рой колебания, проходящие через радиотехн., акустич., оптич. и др. устройства, изменяют свою амплитуду и др. параметры в установленных границах. Для электрич. цепей в пределах П. п. сопротивление цепи (в зависимости от её… … Физическая энциклопедия

    полоса пропускания - Bandwidth Полоса пропускания Область частот, в которой амплитудно частотная характеристика акустического, радиотехнического или оптического устройства достаточно равномерна для того, чтобы обеспечить передачу сигнала без существенного… … Толковый англо-русский словарь по нанотехнологии. - М.

    полоса пропускания - praleidžiamoji juosta statusas T sritis automatika atitikmenys: angl. pass band; pass range; passband; transmission band vok. Durchlaßband, n; Durchlaßbereich, m rus. полоса пропускания, f pranc. bande de transmission, f; bande passante, f; passe … Automatikos terminų žodynas

    полоса пропускания - praleidžiamoji juosta statusas T sritis fizika atitikmenys: angl. pass band; transmission band vok. Durchlaßband, n; Durchlaßbereich, n rus. полоса пропускания, f pranc. bande passante, f … Fizikos terminų žodynas

    Частот, диапазон частот, в пределах которого Амплитудно частотная характеристика (АЧХ) акустического, радиотехнического или оптического устройства достаточно равномерна для того, чтобы обеспечить передачу сигнала без существенного… … Большая советская энциклопедия

    Частот (в радиотехнике и электросвязи) интервал частот, в пределах к рого отношение амплитуды колебаний на выходе электрич. цепи (фильтра, усилителя и др.) к амплитуде колебаний на её входе не опускается ниже определённого уровня, обычно 1 3 дБ… … Большой энциклопедический политехнический словарь

    Диапазон частот, в пределах к рого зависимость амплитуды колебаний на выходе акустич., радиотехн. или оптич. устройства от их частоты достаточно слаба, чтобы обеспечить передачу сигнала без существ, искажения. Ширину П. п. выражают в Гц,… … Естествознание. Энциклопедический словарь

Термин полоса частот в отношении сигнала связан с понятиями об эффективной ширине спектра сигнала , в которой сосредоточено 90% энергии сигнала (по соглашению), а также о нижней и верхней границах полосы частот сигнала. Эти важнейшие характеристики источника сигнала непосредственно связаны с физикой данного источника сигнала. Например, для индукционного вибродатчика полоса частот выходного сигнала реально ограничена сверху единицами килогерц из-за инерционности массы металлического намагниченного сердечника внутри катушки индуктивности датчика, а снизу – величиной, связанной с индуктивностью катушки. Верхняя граница полосы частот сигнала, как правило, связана с физическими ограничениями скорости нарастания сигнала, а нижняя граница полосы частот связана с наличием низкочастотной составляющей сигнала, включая постоянную составляющую .

Термин полоса частот пропускания употребляется в отношении преобразователей и трактов (интерфейсов) передачи сигналов. Речь идёт об амплитудно-частотной характеристике (АЧХ) этих устройств и о характеристиках полосы пропускания этой АЧХ, которые традиционно измеряются по уровню -3 дБ , как это показано она рисунке выше. За нуль децибел принимается максимальное (или среднее, по соглашению) значение амплитуды сигнала в полосе пропускания. На рисунке частоты F 1 и F 2 – это нижняя и верхняя частота полосы пропускания соответственно. Нижняя граница F 1 = 0, если данный преобразователь или тракт пропускает постоянную составляющую сигнала. Чем больше ширина полосы частот пропускания ∆F= F 2 - F 1 преобразователя или тракта передачи данных, тем выше разрешение (детализация) сигнала по времени , тем выше скорость передачи информации в соответствующем интерфейсе , но в то же время тем больше помех и шумов попадает в полосу пропускания.

Если полоса частот сигнала частично или полностью не попадает в полосу частот пропускания преобразователя или тракта, то это приводит к искажению или полному подавлению сигнала в тракте.

С другой стороны, если эффективная полоса частот сигнала многократно у́же полосы частот пропускания преобразователя или тракта, то такой случай нельзя считать оптимальным, поскольку в этой физически реализованной системе всегда присутствуют шум и помехи различной природы, которые в общем случае рассредоточены по всей ширине полосы частот пропускания. Области частот пропускания, в которых нет полезных составляющих сигнала, будут добавлять шум, ухудшая соотношение сигнал/шум в данном канале преобразования или передачи сигнала. Исходя из этих посылок, мы вплотную подошли к термину: оптимальная полоса частот пропускания сигнала – это полоса частот пропускания, границы которой согласованы с эффективной полосой частот сигнала .

В случае АЦП верхняя граница полосы частот пропускания может быть обеспечена антиалайзинговым фильтром , а нижняя граница может быть обеспечена фильтром высокой частоты .

Как видите, общий термин полоса частот , употреблённый в любом контексте, сильно связан с вопросом выбора оборудования по его частотным характеристикам, а также связан с вопросом оптимального согласования преобразователей и трактов передачи с источниками сигналов.

Ширина полосы обычно определяется как разность верхней и нижней граничных частот участка АЧХ. Ширина полосы пропускания выражается в единицах частоты (например, в Гц). Расширение полосы пропускания позволяет передать большее количество информации.

Неравномерность ачх

Неравномерность АЧХ характеризует степень отклонения от прямой, параллельной оси частот. Неравномерность АЧХ выражается в децибелах.

Ослабление неравномерности АЧХ в полосе улучшает воспроизведение формы передаваемого сигнала.

    Идеальные и реальные модели канала передачи информации.

ИДЕАЛЬНЫЙ КАНАЛ

Модель идеального канала

Детерминированный сигнал

РЕАЛЬНЫЙ КАНАЛ

В реальных каналах

Сигнал на выходе канала

x(t) = μ(t)∙s(t-T)+w(t),

Аддитивная помеха

Мультипликативная помеха

    Понятие о дискретизации и квантовании сигналов.

Преобразование непрерывного информационного множества аналоговых сигналов в дискретное множество называется дискретизацией .

Аналоговый сигнал – это сигнал, у которого каждый из представляющих параметров описывается функцией времени и непрерывным множеством возможных значений.

Дискретный сигнал – это сигнал, который принимает лишь конечное число значений.

Квантование - разбиение диапазона значений непрерывной или дискретной величины на конечное число интервалов.

Не следует путать квантование с дискретизацией (и, соответственно, шаг квантования с частотой дискретизации). При дискретизации изменяющаяся во времени величина (сигнал) замеряется с заданной частотой (частотой дискретизации), таким образом, дискретизация разбивает сигнал по временной составляющей (на графике - по горизонтали). Квантование же приводит сигнал к заданным значениям, то есть, разбивает по уровню сигнала (на графике - по вертикали). Сигнал, к которому применены дискретизация и квантование, называется цифровым.

Рис.1 – квантованный сигнал.

Рис.2 – неквантованный сигнал с дискретным временем.

Цифровой сигнал - сигнал данных, у которого каждый из представляющих параметров описывается функцией дискретного времени и конечным множеством возможных значений.

Рис3. – цифровой сигнал.

    Классификация методов дискретизации сигналов.

Используется дискретизация по времени и по уровню .

ДИСКРЕТИЗАЦИЯ ПО ВРЕМЕНИ

Дискретизация по времени

Равномерная дискретизация

Теорема Котельникова

Адаптивная дискретизация

Вследствие того, что изменение функции различно в различные моменты времени, шаг дискретизации может быть различным, обеспечивая равномерную погрешность на каждом шаге.

ДИСКРЕТИЗАЦИЯ ПО УРОВНЮ

Дискретизация значений функции (уровня) носит название квантования . Операция квантования сводится к тому, что вместо данного мгновенного значения сообщения передаются ближайшие значения по установленной шкале дискретных уровней.

Дискретные значения по шкале уровней чаще всего выбираются равномерно. При квантовании вносится погрешность (искажение), так как истинные значения функции заменяются округленными значениям. Величина этой погрешности не превосходит половины шага квантования и может быть сведена до допустимого значения. Погрешность является случайной функцией и проявляется на выходе как дополнительный шум ("шум квантования") , наложенный на передаваемое сообщение.

ДИСКРЕТИЗАЦИЯ ПО ВРЕМЕНИ И УРОВНЮ

Позволяет непрерывное сообщение преобразовать в дискретное (аналоговый сигнал в цифровую форму ), которое затем может быть закодировано и передано методами дискретной (цифровой) техники.

ДИСКРЕТНОЕ ПРЕОБРАЗОВАНИЕ ФУРЬЕ

Дискретизированный сигнал можно рассматривать как результат умножения первоначального непрерывного сигнала на ряд единичных импульсов.

    Критерии оценки точности дискретизации сигналов.

Разность между истинными значениями сигнала x ( t ) и приближающей P ( t ) , или воспроизводящей V ( t ) - функцией, представляет собой текущую погрешность дискретизации или соответственно восстановления:

Выбор критерия оценки погрешности дискретизации (и восстановления) сигнала осуществляется получателем информации и зависит от целевого использования дискретизированного сигнала и возможностей аппаратной (программой) реализации. Оценка погрешности может проводиться как для отдельных, так и для множества реализаций сигнала.

Чаще других отклонение воспроизводимой функции V ( t ) от сигнала x ( t ) на интервале дискретизации Δt i = t i t i –1 оценивается следующими критериями.

а) Критерий наибольшего отклонения:

где ε ( t ) – текущая погрешность, определяемая выражением (1).

б) Среднеквадратический критерий, определяемый следующим выражением:

где ε ( t ) текущая погрешность (1).

Черта сверху означает усреднение по вероятностному множеству,

в) Интегральный критерий как мера отклонения x ( t ) от V ( t ) имеет вид:

г) Вероятностный критерий определяется соотношением:

где ε 0 допустимое значение погрешности;

Р 0 – допустимая вероятность того, что погрешность не превышает значение ε 0 .

    Равномерная дискретизация. Теорема Котельникова.

Дискретизация по времени выполняется путем взятия отсчетов функции в определенные дискретные моменты времени. В результате непрерывная функция заменяется совокупностью мгновенных значений.

Равномерная дискретизация

Моменты отсчета выбираются на оси времени равномерно. Теорема Котельникова – если аналоговый сигнал имеет ограниченный по ширине спектр, то он может быть восстановлен однозначно и без потерь по своим дискретным отсчётам, взятым с частотой, строго большей удвоенной верхней частоты.

    Понятие о кодировании информации.

Код - это набор условных обозначений (или сигналов) для записи (или передачи) некоторых заранее определенных понятий.

Кодирование информации – это процесс формирования определенного представления информации. В более узком смысле под термином «кодирование » часто понимают переход от одной формы представления информации к другой, более удобной для хранения, передачи или обработки.

Обычно каждый образ при кодировании (иногда говорят - шифровке) представлении отдельным знаком.

Знак - это элемент конечного множества отличных друг от друга элементов.

Знак вместе с его смыслом называют символом .

Набор знаков, в котором определен их порядок, называется алфавитом . Существует множество алфавитов:

алфавит кириллических букв {А, Б, В, Г, Д, Е, ...}

алфавит латинских букв {А, В, С, D, Е, F,...}

алфавит десятичных цифр{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

алфавит знаков зодиака {картинки знаков зодиака} и др.

Особенно большое значение имеют наборы, состоящие всего из двух знаков: пара знаков {+, -}, пара цифр {0, 1}, пара ответов {да, нет}

    Структурная схема канала передачи информации.

Рис. 1.3. Функциональная схема системы передачи дискретных

сообщений

    Понятие о реальном и идеальном канале передачи информации.

ИДЕАЛЬНЫЙ КАНАЛ

Модель идеального канала используется тогда, когда можно пренебречь наличием помех. При использовании этой модели выходной сигнал является детерминированным, мощность и по­лоса пропускания сигналов ограниченны.

Детерминированный сигнал точно определен в любой момент времени.

Полоса пропускания это разность между максимальной и минимальной частотами сигнала.

РЕАЛЬНЫЙ КАНАЛ

В реальных каналах всегда имеются ошибки при передаче сообщений. Ошибки приводят к уменьшению пропускной способности канала и потере информации. Вероятности появления ошибок во многом определяются искажениями сигналов и влиянием помех.

Сигнал на выходе канала можно записать в следующем виде:

x(t) = μ(t)∙s(t-T)+w(t),

где s(t) – сигнал на входе канала, w(t) – аддитивная помеха, μ(t) – мультипликативная помеха, T – задержка сигнала.

Аддитивная помеха – помеха, прибавляемая к сигналу при передаче его по информационному каналу.

Аддитивные помехи обусловлены флуктуационными явлениями (случайными колебаниями тока и напряжения), связанными с тепловыми процессами в проводах, резисторах, транзисторах и других элементах схем, наводками под действием атмосферных явлений (грозовые разряды ит. д.) и индустриальных процессов (работа промышленных установок, других линий связи и т. д.).

Мультипликативная помеха – помеха, перемножаемая с сигналом.

Мультипликативные помехи обусловлены случайными изменениями коэффициента передачи канала из-за изменения характеристик среды, в которой распространяются сигналы, и коэффициентом усиления схем при изменении питающих напряжений, из-за замираний сигналов в результате интерференции и различного затухания сигналов при многолучевом распространении радиоволн. К мультипликативным помехам следует отнести и "квантовый шум" лазеров, применяемых в оптических системах передачи и обработки информации. "Квантовый шум" лазера вызван дискретной природой светового излучения и зависит от интенсивности излучения, т. е. от самого полезного сигнала.

    Гауссовский канал и его разновидности.

ГАУССОВСКИЙ КАНАЛ

Основные допущения при построении такой модели следующие:

–коэффициент передачи и время задержки сигналов в канале не зависят от времени и являются детерминированными величинами, известными в месте приема сигналов;

–в канале действует аддитивная флуктуационная помеха – гауссовский "белый шум" (гауссовский процесс, характеризуется равномерной спектральной плотностью, нормально распределённым значением амплитуды и аддитивным способом воздействия на сигнал).

Гауссовский канал применяют как модель реальных каналов проводной связи и однолучевых каналов без замираний или с медленными замираниями. При этом замирания представляют собой неконтролируемые случайные изменения амплитуды сигнала. Такая модель позволяет анализировать амплитудные и фазовые искажения сигналов и влияние флуктуационной помехи.

ГАУССОВСКИЙ КАНАЛ С НЕОПРЕДЕЛЕННОЙ ФАЗОЙ СИГНАЛА

В этой модели время задержки сигнала в канале рассматривают как случайную величину, поэтому фаза выходного сигнала также случайна. Для анализа выходных сигналов канала необходимо знать закон распределения времени задержки или фазы сигнала.

ГАУССОВСКИЙ ОДНОЛУЧЕВОЙ КАНАЛ С ЗАМИРАНИЯМИ

ГАУССОВСКИЙ МНОГОЛУЧЕВОЙ КАНАЛ С ЗАМИРАНИЯМИ

Эта модель описывает радиоканалы, распространение сигналов от передатчика к приемнику в которых происходит по различным "каналам" – путям. Длительность прохождения сигналов и коэффициенты передачи различных "каналов" являются неодинаковыми и случайными. Принимаемый сигнал образуется в результате интерференции сигналов, пришедших по разным путям. В общем случае частотная и фазовая характеристики канала зависят от времени и частоты.

ГАУССОВСКИЙ МНОГОЛУЧЕВОЙ КАНАЛ С ЗАМИРАНИЯМИ И АДДИТИВНЫМИ СОСРЕДОТОЧЕННЫМИ ПОМЕХАМИ

В этой модели наряду с флуктуационной помехой учитывают и различного вида сосредоточенные помехи. Она является наиболее общей и достаточно полно отражает свойства многих реальных каналов. Однако ее использование порождает сложность и трудоемкость задач анализа, а также необходимость сбора и обработки большого объема исходных статистических данных.

В настоящее время для решения задач анализа непрерывных и дискретных каналов используются, как правило, модель гауссовского канала и модель гауссовского однолучевого канала с замираниями.

    Методика формирования кода Шеннона-Фенно, его достоинства и недостатки.

АЛГОРИТМ ШЕННОНА-ФЕННО

Состоит в том, что расположенные в порядке убывания буквы алфавита делятся на две группы по возможности равной суммарной (в каждой группе) вероятности. Для первой группы символов на первом месте комбинации ставят 0 в качестве первой крайней слева позиции кодовых слов, а элементы второй группы – 1. Далее каждая группа снова делится на подгруппы по тому же правилу примерно равных вероятностей и в каждой подгруппе заполняется вторая слева позиция кодового слова (0,1).Процесс повторяется до кодирования всех элементов алфавита.

ПРЕИМУЩЕСТВА

–простота реализации и, как следствие этого, высокая скорость кодирования/раскодирования/

–удобно кодировать информацию в виде последовательности нулей и единиц, если представить эти значения как два возможных устойчивых состояния электронного элемента: 0 – отсутствие электрического сигнала; 1 – наличие электрического сигнала. К тому же в технике легче иметь дело с большим количеством простых элементов, чем с небольшим числом сложных.

– По методу Ш-Ф получается, что чем более вероятно сообщение, тем быстрее оно образует самостоятельную группу и тем более коротким кодом оно будет представлено. Это обстоятельство обеспечивает высокую экономичность кода Ш-Ф.

НЕДОСТАТКИ

–Для декодирования полученного сообщения, таблицу кодов необходимо отправлять вместе с сообщением, что повысит объем данных конечного сообщения.

–В случае обыкновенного кода (у которого все символы используются для передачи информации), при возникновении ошибки в коде, его расшифровка будет невозможна. Это обусловлено тем, что кодовые комбинации имеют разную длину, и в случае ошибки (заменяя символа 1 на 0, и наоборот) одна или несколько кодовых комбинаций в сообщении могут не совпасть с символами кодовой таблицы.

–Кодирование Шеннона–Фано является достаточно старым методом сжатия, и на сегодняшний день оно не представляет особого практического интереса.

    Энтропия источника независимых сообщений.

общая энтропия дискретных источников сообщений Х и У равна сумме энтропий источников.

H нз (X,Y) = H(X) + H(Y), где H нз (X,Y) – суммарная энтропия независимых систем, H(X) – энтропия системы X, H(Y) – энтропия системы Y.

    Энтропия источника зависимых сообщений.

количество информации об источнике X определяют как уменьшение энтропии источника X в результате получения сведений об источнике Y.

H з (X,Y) = H(X) + H(Y|X), где H з (X,Y) – суммарная энтропия зависимых систем, H(X) – энтропия системы X, H(Y|X) – условная энтропия системы Y относительно X.

Энтропия зависимых систем меньше, чем энтропия независимых систем. Если энтропии равны, то имеет место частный случай зависимых систем – системы независимы.

H з (X,Y) <= H нз (X,Y) (<= – меньше или равно).

    Свойства энтропии. Мера Хартли.

Энтропия - величина всегда положительная и конечная, поотому что значение вероятности находится в интервале от 0 до 1. Н(а) = -Logk P(a) 2. Аддитивность - свойство, согласно которому количество информации, содержащееся в нескольких независимых сообщений равно сумме количества информации, содержащейся в каждом из них. 3. Энтропия равна 0, если вероятность одного из состояний источника информации равна 1, и тем самым состояние источника полностью определено (вероятности остальных состояний источника равны нулю, т.к. сумма вероятностей должна быть равна 1). Формула Хартли определяется: где I - количество информации, бит.

    Понятие о производительности источника и скорости передачи информации.

ПРОИЗВОДИТЕЛЬНОСТЬ ИСТОЧНИКА ИНФОРМАЦИИ

При работе источника сообщений отдельные сигналы появляются через интервалы времени, которые в общем случае могут быть не постоянными. Однако, если существует некоторая средняя длительность создания источником одного сигнала, то энтропия источника, приходящаяся на единицу времени, называется производительностью источника информации.

СКОРОСТЬ ПЕРЕДАЧИ ИНФОРМАЦИИ

Это скорость передачи данных, выраженная в количестве бит, символов или блоков, передаваемых за единицу времени.

Теоретическая верхняя граница скорости передачи информации определяется теоремой Шеннона-Хартли.

ТЕОРЕМА ШЕННОНА-ХАРТЛИ

пропускная способность канала C, означающая теоретическую верхнюю границу скорости передачи данных, которые можно передать с данной средней мощностью сигнала S через аналоговый канал связи, подверженный аддитивному белому гауссовскому шуму мощности N равна:

C=B∙log 2 (1+S/N),

где C – пропускная способность канала, бит/с; B – полоса пропускания канала, Гц; S – полная мощность сигнала, Вт; N – шумовая мощность, Вт.

Часто при описании электронных сетей связи используется термин «полоса пропускания». Это одна из ключевых характеристик подобных систем. На первый взгляд может показаться, что человеку, работа которого никак не связана с линиями связи, нет необходимости разбираться, что такое полоса пропускания канала. На самом же деле все немного не так. У многих есть домашний персональный компьютер, подключенный к И каждый знает, что иногда работа со «всемирной паутиной» без видимых причин замедляется. Одна из причин этого заключается в том, что в тот самый момент полоса пропускания канала провайдера оказывается перегруженной. Результат - явное замедление и возможные сбои в работе. Прежде чем дать определение понятию «полоса пропускания», воспользуемся примером, позволяющим любому человеку понять, о чем идет речь.

Представим себе автомобильную дорогу в небольшом провинциальном городке и в густонаселенном мегаполисе. В первом случае чаще всего она рассчитана на один или два потока машин, соответственно, ширина небольшая. А вот в крупных городах даже четырехполосным движением никого не удивишь. За одно и то же время количество машин, проехавших одинаковое расстояние по этим двум дорогам, существенно отличается. Оно зависит от двух характеристик - скорости движения и количества полос. В данном примере дорога - это а машины представляют собой биты информации. В свою очередь каждая полоса - это линия связи.

Другими словами, полоса пропускания косвенно указывает, какое количество данных может быть передано по за единицу времени. Чем этот параметр выше, тем комфортнее работа через такое соединение.

Если со скоростью передачи все очевидно (она возрастает с уменьшением задержек передачи сигнала), то термин «ширина полосы пропускания» немного более сложен. Как известно, чтобы сигнал мог передать информацию, он определенным образом преобразуется. Применительно к электронике это может быть или смешанная модуляция. Однако одна из особенностей передачи заключается в том, что по одному и тому же проводнику одновременно могут быть переданы сразу несколько импульсов с разной частотой (в пределах общей полосы, пока искажения находятся в допустимых рамках). Эта возможность позволяет увеличить общую производительность работы линии связи без изменения задержек. Яркий пример сосуществования частот - это одновременный разговор нескольких человек с различным тембром. Хотя говорят все, но слова каждого вполне различимы.

Почему же при работе с сетью иногда наблюдается замедление? Все объясняется довольно просто:

Чем выше задержки, тем меньше скорость. Любые помехи прохождению сигнала (программные или физические) снижают быстродействие;

Часто включает в себя дополнительные биты, выполняющие дублирующие функции - так называемая «избыточность». Это необходимо для обеспечения работоспособности в условиях наличия помех на линии;

Достигнут физический предел проводящей среды, когда все допустимые уже используются и при новых порциях данных они помещаются в очередь на отправку.

Для решения подобных проблем провайдеры применяют несколько различных подходов. Это может быть виртуализация, увеличивающая «ширину», но вносящая дополнительные задержки; увеличение канала за счет «лишних» проводящих сред и пр.

В цифровой технике иногда используется термин «бод». Фактически он означает количество бит данных, переданных за единицу времени. Во времена медленных линий связи (dial-up) 1 бод соответствовал 1 биту за 1 секунду. В дальнейшем, с ростом скоростей, «бод» перестал быть универсальным. Он мог означать 1, 2, 3 и более бит в секунду, что требовало отдельного указания, поэтому в настоящее время используется другая система, понятная каждому.

Степень искажения синусоидальных сигналов линиями связи оценивается с помо­щью таких характеристик, как амплитудно-частотная характеристика, полоса про­пускания и затухание на определенной частоте.

Амплитудно-частотная характеристика (рис. 2.7) показывает, как затухает ам­плитуда синусоиды на выходе линии связи по сравнению с амплитудой на ее входе для всех возможных частот передаваемого сигнала. Вместо амплитуды в этой ха­рактеристике часто используют также такой параметр сигнала, как его мощность.

Знание амплитудно-частотной характеристики реальной линии позволяет оп­ределить форму выходного сигнала практически для любого входного сигнала. Для этого необходимо найти спектр входного сигнала, преобразовать амплитуду со­ставляющих его гармоник в соответствии с амплитудно-частотной характеристи­кой, а затем найти форму выходного сигнала, сложив преобразованные гармоники.

Несмотря на полноту информации, предоставляемой амплитудно-частотной ха­рактеристикой о линии связи, ее использование осложняется тем обстоятельством, что получить ее весьма трудно. Ведь для этого нужно провести тестирование ли­нии эталонными синусоидами по всему диапазону частот от нуля до некоторого максимального значения, которое может встретиться во входных сигналах. При­чем менять частоту входных синусоид нужно с небольшим шагом, а значит, коли­чество экспериментов должно быть очень большим. Поэтому на практике вместо амплитудно-частотной характеристики применяются другие, упрощенные характеристики - полоса пропускания и затухание.

Полоса пропускания (bandwidth ) - это непрерывный диапазон частот, для кото­рого отношение амплитуды выходного сигнала ко входному превышает некоторый заранее заданный предел, обычно 0,5. То есть полоса пропускания определяет диа­пазон частот синусоидального сигнала, при которых этот сигнал передается по линии связи без значительных искажений. Знание полосы пропускания позволяет получить с некоторой степенью приближения тот же результат, что и знание амп­литудно-частотной характеристики. Как мы увидим ниже, ширина полосы пропус­кания в наибольшей степени влияет на максимально возможную скорость передачи информации по линии связи. Именно этот факт нашел отражение в английском эквиваленте рассматриваемого термина (width - ширина).

Затухание (attenuation ) определяется как относительное уменьшение ампли­туды или мощности сигнала при передаче по линии сигнала определенной частоты. Таким образом, затухание представляет собой одну точку из амплитудно-частот­ной характеристики линии. Часто при эксплуатации линии заранее известна ос­новная частота передаваемого сигнала, то есть та частота, гармоника которой имеет наибольшую амплитуду и мощность. Поэтому достаточно знать затухание на этой частоте, чтобы приблизительно оценить искажения передаваемых по ли­нии сигналов. Более точные оценки возможны при знании затухания на несколь­ких частотах, соответствующих нескольким основным гармоникам передаваемого сигнала.

Затухание А обычно измеряется в децибелах (дБ, decibel - dB) и вычисляется последующей формуле:

где Р вых - мощность сигнала на выходе линии, Р вх - мощность сигнала на входе линии.

Так как мощность выходного сигнала кабеля без промежуточных усилителей всегда меньше, чем мощность входного сигнала, затухание кабеля всегда является отрицательной величиной.

Например, кабель на витой паре категории 5 характеризуется затуханием не ниже -23,6 дБ для частоты 100 МГц при длине кабеля 100 м. Частота 100 МГц выбрана потому, что кабель этой категории предназначен для высокоскоростной передачи данных, сигналы которых имеют значимые гармоники с частотой примерно 100 МГц. Кабель категории 3 предназначен для низкоскоростной передачи данных, поэтому для него определяется затухание на частоте 10 МГц (не ниже -11,5 дБ). Часто опе­рируют с абсолютными значениями затухания, без указания знака.

Абсолютный уровень мощности, например уровень мощности передатчика, также измеряется в децибелах. При этом в качестве базового значения мощности сигнала, относительно которого измеряется текущая мощность, принимается зна­чение в 1 мВт. Таким образом, уровень мощности р вычисляется по следующей формуле:

где Р - мощность сигнала в милливаттах, а дБм (dBm) - это единица измерения уровня мощности (децибел на 1 мВт).

Таким образом, амплитудно-частотная характеристика, полоса пропускания и затухание являются универсальными характеристиками, и их знание позволяет сделать вывод о том, как через линию связи будут передаваться сигналы любой формы.

Полоса пропускания зависит от типа линии и ее протяженности. На рис. 2.8 по­ казаны полосы пропускания линий связи различных типов, а также наиболее часто используемые в технике связи частотные диапазоны;

Пропускная способность линии

Пропускная способность (throughput ) линии характеризует максимально возмож­ную скорость передачи данных по линии связи. Пропускная способность измеря­ется в битах в секунду - бит/с, а также в производных единицах, таких как килобит в секунду (Кбит/с), мегабит в секунду (Мбит/с), гигабит в секунду (Гбит/с) и т. д.

ПРИМЕЧАНИЕ Пропускная способность линий связи и коммуникационного сетевого оборудования традиционно изме­ряется в битах в секунду, а не в байтах в секунду. Это связано с тем, что данные в сетях передаются последовательно, то есть побитно, а не параллельно, байтами, как это происходит между устройствами внутри компьютера. Такие единицы измерения, как килобит, мегабит или гигабит, в сетевых технологиях строго соответствуют аепеням 10 (то еаь килобит - это 1000 бит, а мегабит - это 1 000 000 бит), как это принято во всех отраслях науки и техники, а не близким к этим числам степеням 2, как это принято в программировании, где приставка «кило» равна 2 10 =1024, а «мега» - 2 20 = 1 048 576.

Пропускная способность линии связи зависит не только от ее характеристик, таких как амплитудно-частотная характеристика, но и от спектра передаваемых сигналов. Если значимые гармоники сигнала (то есть те гармоники, амплитуды которых вносят основной вклад в результирующий сигнал) попадают в полосу пропускания линии, то такой сигнал будет хорошо передаваться данной линией связи и приемник сможет правильно распознать информацию, отправленную по линии передатчиком (рис. 2.9, а). Если же значимые гармоники выходят за грани­цы полосы пропускания линии связи, то сигнал будет значительно искажаться, приемник будет ошибаться при распознавании информации, а значит, информа­ция не сможет передаваться с заданной пропускной способностью (рис. 2.9,6).

Выбор способа представления дискретной информации в виде сигналов, пода­ваемых на линию связи, называется физическим или линейным кодированием. От выбранного способа кодирования зависит спектр сигналов и, соответственно, пропускная способность линии. Таким образом, для одного способа кодирования линия может обладать одной пропускной способностью, а для другого - другой. Например, витая пара категории 3 может передавать данные с пропускной способ­ностью 10 Мбит/с при способе кодирования стандарта физического уровня 10Base-T и 33 Мбит/с при способе кодирования стандарта 100Base-T4. В примере, приве­денном на рис. 2.9, принят следующий способ кодирования - логическая 1 пред­ставлена на линии положительным потенциалом, а логический 0 - отрицательным.

Теория информации говорит, что любое различимое и непредсказуемое измене­ние принимаемого сигнала несет в себе информацию. В соответствии с этим прием синусоиды, у которой амплитуда, фаза и частота остаются неизменными, инфор­мации не несет, так как изменение сигнала хотя и происходит, но является хорошо предсказуемым. Аналогично, не несут в себе информации импульсы на тактовой шине компьютера, так как их изменения также постоянны во времени. А вот им­пульсы на шине данных предсказать заранее нельзя, поэтому они переносят ин­формацию между отдельными блоками или устройствами.

Большинство способов кодирования используют изменение какого-либо пара­метра периодического сигнала - частоты, амплитуды и фазы синусоиды или же знак потенциала последовательности импульсов. Периодический сигнал, парамет­ры которого изменяются, называют несущим сигналом или несущей частотой, если в качестве такого сигнала используется синусоида.

Если сигнал изменяется так, что можно различить только два его состояния, то любое его изменение будет соответствовать наименьшей единице информации - биту. Если же сигнал может иметь более двух различимых состояний, то любое его изменение будет нести несколько бит информации.

Количество изменений информационного параметра несущего периодического сигнала в секунду измеряется в бодах (baud ). Период времени между соседними изменениями информационного сигнала называется тактом работы передатчика.

Пропускная способность линии в битах в секунду в общем случае не совпадает с числом бод. Она может быть как выше, так и ниже числа бод, и это соотношение зависит от способа кодирования.

Если сигнал имеет более двух различимых состояний, то пропускная способность в битах в секунду будет выше, чем число бод. Например, если информационными параметрами являются фаза и амплитуда синусоиды, причем различаются 4 состоя­ния фазы в 0, 90,180 и 270 градусов и два значения амплитуды сигнала, то инфор­мационный сигнал может иметь 8 различимых состояний. В этом случае модем, работающий со скоростью 2400 бод (с тактовой частотой 2400 Гц) передает инфор­мацию со скоростью 7200 бит/с, так как при одном изменении сигнала передается 3 бита информации.

При использовании сигналов с двумя различимыми состояниями может наблю­даться обратная картина. Это часто происходит потому, что для надежного распозна­вания приемником пользовательской информации каждый бит в последовательности кодируется с помощью нескольких изменений информационного параметра несущего сигнала. Например, при кодировании единичного значения бита импульсом поло­жительной полярности, а нулевого значения бита - импульсом отрицательной поляр­ности физический сигнал дважды изменяет свое состояние при передаче каждого бита. При таком кодировании пропускная способность линии в два раза ниже, чем число бод, передаваемое по линии.

На пропускную способность линии оказывает влияние не только физическое, но и логическое кодирование. Логическое кодирование выполняется до физического кодирования и подразумевает замену бит исходной информации новой последова­тельностью бит, несущей ту же информацию, но обладающей, кроме этого, до­полнительными свойствами, например возможностью для приемной стороны обнаруживать ошибки в принятых данных. Сопровождение каждого байта исход­ной информации одним битом четности - это пример очень часто применяемого способа логического кодирования при передаче данных с помощью модемов. Дру­гим примером логического кодирования может служить шифрация данных, обес­печивающая их конфиденциальность при передаче через общественные каналы связи. При логическом кодировании чаще всего исходная последовательность бит заме­няется более длинной последовательностью, поэтому пропускная способность ка­нала по отношению к полезной информации при этом уменьшается.

Связь между пропускной способностью линии и ее полосой пропускания

Чем выше частота несущего периодического сигнала, тем больше информации в единицу времени передается по линии и тем выше пропускная способность линии при фиксированном способе физического кодирования. Однако, с другой стороны, с увеличением частоты периодического несущего сигнала увеличивается и ширина спектра этого сигнала, то есть разность между максимальной и минимальной час­тотами того набора синусоид, которые в сумме дадут выбранную для физического кодирования последовательность сигналов. Линия передает этот спектр синусоид с теми искажениями, которые определяются ее полосой пропускания. Чем больше несоответствие между полосой пропускания линии и шириной спектра передавае­мых информационных сигналов, тем больше сигналы искажаются и тем вероятнее ошибки в распознавании информации принимающей стороной, а значит, скорость передачи информации на самом деле оказывается меньше, чем можно было пред­положить.

Связь между полосой пропускания линии и ее максимально возможной пропуск­ ной способностью, вне зависимости от принятого способа физического кодирования, установил Клод Шеннон:

где С - максимальная пропускная способность линии в битах в секунду, F - ширина полосы пропускания линии в герцах, Р с - мощность сигнала, Р ш - мощность шума.

Из этого соотношения видно, что хотя теоретического предела пропускной спо­собности линии с фиксированной полосой пропускания не существует, на практи­ке такой предел имеется. Действительно, повысить пропускную способность линии можно за счет увеличения мощности передатчика или же уменьшения мощности шума (помех) на линии связи. Обе эти составляющие поддаются изменению с большим трудом. Повышение мощности передатчика ведет к значительному уве­личению его габаритов и стоимости. Снижение уровня шума требует применения специальных кабелей с хорошими защитными экранами, что весьма дорого, а так­же снижения шума в передатчике и промежуточной аппаратуре, чего достичь весьма не просто. К тому же влияние мощностей полезного сигнала и шума на пропуск­ную способность ограничено логарифмической зависимостью, которая растет да­леко не так быстро, как прямо-пропорциональная. Так, при достаточно типичном исходном отношении мощности сигнала к мощности шума в 100 раз повышение мощности передатчика в 2 раза даст только 15 % увеличения пропускной способ­ности линии.

Близким по сути к формуле Шеннона является следующее соотношение, полу­ченное Найквистом, которое также определяет максимально возможную пропуск­ную способность линии связи, но без учета шума на линии:

где М - количество различимых состояний информационного параметра.

Если сигнал имеет 2 различимых состояния, то пропускная способность равна удвоенному значению ширины полосы пропускания линии связи (рис. 2.10, а). Если же передатчик использует более чем 2 устойчивых состояния сигнала для кодирования данных, то пропускная способность линии повышается, так как за один такт работы передатчик передает несколько бит исходных данных, например 2 бита при наличии четырех различимых состояний сигнала (рис. 2.10, б).

Хотя формула Найквиста явно не учитывает наличие шума, косвенно его влия­ние отражается в выборе количества состояний информационного сигнала. Для повышения пропускной способности канала хотелось бы увеличить это количество до значительных величин, но на практике мы не можем этого сделать из-за шума на линии. Например, для примера, приведенного на рис. 2.10, можно увеличить пропускную способность линии еще в два раза, использовав для кодирования дан­ных не 4, а 16 уровней. Однако если амплитуда шума часто превышает разницу между соседними 16-ю уровнями, то приемник не сможет устойчиво распознавать передаваемые данные. Поэтому количество возможных состояний сигнала фактичес­ки ограничивается соотношением мощности сигнала и шума, а формула Найквиста определяет предельную скорость передачи данных в том случае, когда количество состояний уже выбрано с учетом возможностей устойчивого распознавания прием­ником.

Приведенные соотношения дают предельное значение пропускной способности линии, а степень приближения к этому пределу зависит от конкретных методов физического кодирования, рассматриваемых ниже.

Помехоустойчивость и достоверность

Помехоустойчивость линии определяет ее способность уменьшать уровень помех, создаваемых во внешней среде, на внутренних проводниках. Помехоустойчивость линии зависит от типа используемой физической среды, а также от экранирующих и подавляющих помехи средств самой линии. Наименее помехоустойчивыми явля­ются радиолинии, хорошей устойчивостью обладают кабельные линии и отличной - волоконно-оптические линии, малочувствительные ко внешнему электромагнит­ному излучению. Обычно для уменьшения помех, появляющихся из-за внешних электромагнитных полей, проводники экранируют и/или скручивают.

Перекрестные наводки на ближнем конце (Near End Cross Talk - NEXT ) опреде­ляют помехоустойчивость кабеля к внутренним источникам помех, когда электромаг­нитное поле сигнала, передаваемого выходом передатчика по одной паре проводников, наводит на другую пару проводников сигнал помехи. Если ко второй паре будет подключен приемник, то он может принять наведенную внутреннюю помеху за полез­ный сигнал. Показатель NEXT, выраженный в децибелах, равен 10 log Р ВЫХ /Р НАВ, где Р ВЫХ - мощность выходного сигнала, Р НАВ - мощность наведённого сигнала.

Чем меньше значение NEXT, тем лучше кабель. Так, для витой пары катего­рии 5 показатель NEXT должен быть меньше -27 дБ на частоте 100 МГц.

Показатель NEXT обычно используется применительно к кабелю, состоящему из нескольких витых пар, так как в этом случае взаимные наводки одной пары на другую могут достигать значительных величин. Для одинарного коаксиального кабеля (то есть состоящего из одной экранированной жилы) этот показатель не имеет смысла, а для двойного коаксиального кабеля он также не применяется вслед­ствие высокой степени защищенности каждой жилы. Оптические волокна также не создают сколь-нибудь заметных помех друг для друга.

В связи с тем, что в некоторых новых технологиях используется передача дан­ных одновременно по нескольким витым парам, в последнее время стал приме­няться показатель PowerSUM , являющийся модификацией показателя NEXT. Этот показатель отражает суммарную мощность перекрестных наводок от всех передаю­щих пар в кабеле.

Достоверность передачи данных характеризует вероятность искажения для каж­дого передаваемого бита данных. Иногда этот же показатель называют интенсивно­ стью битовых ошибок (Bit Error Rate , BER ). Величина BER для каналов связи без дополнительных средств защиты от ошибок (например, самокорректирующихся кодов или протоколов с повторной передачей искаженных кадров) составляет, как правило, 10" 4 -10~ 6 , в оптоволоконных линиях связи - 10~ 9 . Значение достоверности передачи данных, например, в Ю -4 говорит о том, что в среднем из 10 000 бит искажается значение одного бита.

Искажения бит происходят как из-за наличия помех на линии, так и по причи­не искажений формы сигнала ограниченной полосой пропускания линии. Поэто­му для повышения достоверности передаваемых данных нужно повышать степень помехозащищенности линии, снижать уровень перекрестных наводок в кабеле, а также использовать более широкополосные линии связи.

Напряжение батареи на большинстве АТС в СНГ обычно составляет 60 В, но оно может быть в диапа­зоне 24...100 В.

Рассчитаем величину тока линии (для худшего случая):

Сопротивление катушек (2x400 Ом) 800 Ом

10км телефонной линии 18000м

Сопротивление телефонного аппарата... 300 Ом

Всего: 29000м

Напряжение батареи 60 В

Минимальный ток линии: 60 В/2900Ом - 20,7мА.

В табл. 2.1 приводятся величины минимальных токов линии для телефонных сетей некоторых евро­пейских стран.

В прошлом большинство телефонных компаний определяли максимальное сопротивление постоян­ному току для ТА, чтобы гарантировать минималь­ный ток катушек. Однако для электронных ТА сложно определить максимальное сопротивление постоянному току, так как они имеют нелинейную ВАХ (вольт-амперную характеристику). ВАХ обусловлена полярностью защитного моста и очень вы­соким сопротивлением моста к малым токам. На рис. 2.19 приводятся области допустимых и недопу­стимых вольт-амперных характеристик для телефон­ных сетей. Некоторые компании разрешают большее напряжение в линии во время частотного набора, т.к. эти системы работают без выделения цифровых импульсов. В США нормативно разрешено напря­жение линии 6 В при токе 20 мА, но при частотном наборе оно может быть 8 В при токе 20 мА. Поэтому легче питать генераторы частотного кода в странах с этим типом спецификации.

Некоторые телефонные компании допускают меньшее напряжение в линии во время импульсно­го набора, чтобы упростить для реле на АТС выделе­ние прерываний тока линии.

Таблица 2.1

Минимальный ток линии, мА

Белорусия

Великобритания

Нидерланды

Норвегия