Домой / Работа в Интернете / Дифференцирующая цепь. Фильтр верхних частот. Условия дифференцирования и интегрирования

Дифференцирующая цепь. Фильтр верхних частот. Условия дифференцирования и интегрирования

А вместе они образуют RC-цепь, то есть это цепь, которая состоит из конденсатора и резистора. Все просто;-)

Как вы помните, конденсатор представляет из себя две обкладки на некотором расстоянии друг от друга.

Вы, наверное, помните, что его емкость зависит от площади обкладок, от расстояния между ними, а также от вещества, которое находится между обкладками. Или формулой для плоского конденсатора:


где


Ладно, ближе к делу. Пусть у нас имеется конденсатор. Что с ним можно сделать? Правильно, зарядить;-) Для этого берем источник постоянного напряжения и подаем заряд на конденсатор, тем самым заряжая его:

В результате, у нас конденсатор зарядится. На одной обкладке будет положительный заряд, а на другой обкладке – отрицательный:

Даже если убрать батарею, у нас заряд на конденсаторе все равно сохранится в течение какого-то времени.

Сохранность заряда зависит от сопротивления материала между пластинами. Чем оно меньше, тем быстрее со временем будет разряжаться конденсатор, создавая ток утечки . Поэтому самыми плохими, в плане сохранности заряда, являются электролитические конденсаторы, или в народе – электролиты:


Но что произойдет, если к конденсатору мы подсоединим резистор?

Конденсатор разрядится, так как цепь станет замкнутой.

Постоянная времени RC-цепи

Кто хоть чуть-чуть шарит в электронике, прекрасно понимает эти процессы. Это все банальщина. Но дело в том, что мы не можем наблюдать процесс разрядки конденсатора, просто посмотрев на цепь. Для этого нам понадобится с функцией записи сигнала. Благо на моем рабочем столе уже есть место этому прибору:


Итак, план действий будет такой: мы будем заряжать конденсатор с помощью блока питания, а потом разряжать его на резисторе и смотреть осциллограмму, как разряжается конденсатор. Соберем классическую схему, которая есть в любом учебнике по электронике:

в этот момент мы заряжаем конденсатор


потом переключаем тумблер S в другое положение и разряжаем конденсатор, наблюдая процесс разряда конденсатора на осциллографе


Думаю, с этим все понятно. Ну что же, приступим к сборке.

Берем макетную плату и собираем схемку. Конденсатор я взял емкостью в 100мкФ, а резистор 1 КилоОм.


Вместо тумблера S я буду вручную перекидывать желтый проводок.

Ну все, цепляемся щупом осциллографа к резистору

и смотрим осциллограмму, как разряжается конденсатор.


Те, кто впервые читает про RC-цепи, думаю, немного удивлены. По логике, разряд должен проходить прямолинейно, но здесь мы видим загибулину. Разряд происходит по так называемой экспоненте . Так как я не люблю алгебру и матанализ, то не буду приводить различные математические выкладки. Кстати, а что такое экспонента? Ну экспонента – это график функции “е в степени икс”. Короче, все учились в школе, вам лучше знать;-)

Так как при замыкании тумблера у нас получилась RC-цепь, то у нее есть такой параметр, как постоянная времени RC-цепи . Постоянная времени RC-цепи обозначается буквой t , в другой литературе обозначают большой буквой T. Чтобы было проще для понимания, давайте также будем обозначать постоянную времени RC цепи большой буквой Т.

Итак, думаю стоит запомнить, что постоянная времени RC-цепи равняется произведению номиналов сопротивления и емкости и выражается в секундах, или формулой:

T=RC

где T – постоянная времени, Секунды

R – сопротивление, Ом

С – емкость, Фарады

Давайте посчитаем, чему равняется постоянная времени нашей цепи. Так как у меня конденсатор емкостью в 100 мкФ, а резистор 1 кОм, то постоянная времени равняется T=100 x 10 -6 x 1 х 10 3 =100 x 10 -3 = 100 миллисекунд.

Для тех, кто любит считать глазами, можно построить уровень в 37% от амплитуды сигнала и затем уже аппроксимировать на ось времени. Это и будет постоянная времени RC-цепи. Как вы видите, наши алгебраические расчеты почти полностью сошлись с геометрическими, так как цена деления стороны одного квадратика по времени равняется 50 миллисекундам.


В идеальном случае конденсатор сразу же заряжается, если на него подать напряжение. Но в реальном все-таки есть некоторое сопротивление ножек, но все равно можно считать, что заряд происходит почти мгновенно. Но что будет, если заряжать конденсатор через резистор? Разбираем прошлую схему и стряпаем новую:

исходное положение


как только мы замыкаем ключ S, у нас конденсатор начинает заряжаться от нуля и до значения 10 Вольт, то есть до значения, которое мы выставили на блоке питания


Наблюдаем осциллограмму, снятую с конденсатора


Ничего общего не увидели с прошлой осциллограммой, где мы разряжали конденсатор на резистор? Да, все верно. Заряд тоже идет по экспоненте;-). Так как радиодетали у нас одинаковые, то и постоянная времени тоже одинаковая. Графическим способом она высчитывается как 63% от амплитуды сигнала


Как вы видите, мы получили те же самые 100 миллисекунд.

По формуле постоянной времени RC-цепи, нетрудно догадаться, что изменение номиналов сопротивления и конденсатора повлечет за собой изменение и постоянной времени. Поэтому, чем меньше емкость и сопротивление, тем короче по времени постоянная времени. Следовательно, заряд или разряд будет происходить быстрее.

Для примера, давайте поменяем значение емкости конденсатора в меньшую сторону. Итак, у нас был конденсатора номиналом в 100 мкФ, а мы поставим 10 мкФ, резистор оставляем такого же номинала в 1 кОм. Посмотрим еще раз на графики заряда и разряда.

Вот так заряжается наш конденсатор номиналом в 10 мкФ


А вот так он разряжается


Как вы видите, постоянная времени цепи в разы сократилась. Судя по моим расчетам она стала равняться T=10 x 10 -6 x 1000 = 10 x 10 -3 = 10 миллисекунд. Давайте проверим графо-аналитическим способом, так ли это?

Строим на графике заряда или разряда прямую на соответствующем уровне и аппроксимируем ее на ось времени. На графике разряда будет проще;-)


Одна сторона квадратика по оси времени у нас 10 миллисекунд (чуть ниже рабочего поля написано M:10 ms), поэтому нетрудно посчитать, что постоянная времени у нас 10 миллисекунд;-). Все элементарно и просто.

То же самое можно сказать и про сопротивление. Емкость я оставляю такой же, то есть 10 мкФ, резистор меняю с 1 кОм на 10 кОм. Смотрим, что получилось:


По расчетам постоянная времени должна быть T=10 x 10 -6 x 10 x 10 3 = 10 x 10 -2 = 0,1 секунда или 100 миллисекунд. Смотрим графо-аналитическим способом:


100 миллисекунд;-)

Вывод: чем больше номинал конденсатора и резистора, тем больше постоянная времени, и наоборот, чем меньше номиналы этих радиоэлементов, тем меньше постоянная времени. Все просто;-)

Ладно, думаю, с этим все понятно. Но куда можно применить этот принцип зарядки и разрядки конденсатора? Оказывается, применение нашлось…

Интегрирующая цепь

Собственно сама схема:


А что будет, если мы на нее будем подавать прямоугольный сигнал с разной частотой? В дело идет китайский генератор функций :


Выставляем на нем частоту 1 Герц и размахом в 5 Вольт


Желтая осциллограмма – это сигнал с генератора функций, который подается на вход интегрирующей цепи на клеммы Х1, Х2, а с выхода мы снимаем красную осциллограмму, то есть с клемм Х3, Х4:


Как вы могли заметить, конденсатор почти полностью успевает зарядиться и разрядиться.

Но что будет, если мы добавим частоту? Выставляю на генераторе частоту в 10 Герц. Смотрим что у нас получилось:


Конденсатор не успевает заряжаться и разряжаться как уже приходит новый прямоугольный импульс. Как мы видим, амплитуда выходного сигнала очень сильно просела, можно сказать, он скукожился ближе к нулю.

А сигнал в 100 Герц вообще не оставил ничего от сигнала, кроме малозаметных волн


Сигнал в 1 Килогерц на выходе вообще не дал ничего…


Еще бы! Попробуй-ка с такой частотой перезаряжать конденсатор:-)

Все то же самое касается и других сигналов: синусоиды и треугольного. везде выходной сигнал почти равен нулю на частоте 1 Килогерц и выше.



“И это все, на что способна интегрирующая цепь?” – спросите вы. Конечно нет! Это было только начало.

Давайте разберемся… Почему у нас с возрастанием частоты сигнал стал прижиматься к нулю и потом вообще пропал?

Итак, во-первых, эта цепь у нас получается как делитель напряжения , и во-вторых, конденсатор – это частотно-зависимый радиоэлемент. Его сопротивление зависит от частоты. Про это можно прочитать в статье конденсатор в цепи постоянного и переменного тока . Следовательно, если бы мы подавали постоянный ток на вход (у постоянного тока частота 0 Герц), то и на выходе бы тоже получили тот же самый постоянный ток такого же значения, которое загоняли на вход. В это случае конденсатору ведь по барабану. Все что он сможет сделать в этой ситуации – тупо зарядиться по экспоненте и все. На этом его участь в цепи постоянного тока заканчивается и он стает диэлектриком для постоянного тока.

Но как только в цепь подается переменный сигнал, конденсатор вступает в игру. Тут его сопротивление уже зависит от частоты. И чем она больше, тем меньшим сопротивлением обладает конденсатор. Формула сопротивления конденсатора от частоты:

где

Х С – это сопротивление конденсатора, Ом

П – постоянная и равняется приблизительно 3,14

F – частота, Герц

С – емкость конденсатора, Фарад

Итак, что в результате получается? А получается то, что чем больше частота, тем меньше сопротивление конденсатора. На нулевой частоте у нас сопротивление конденсатора в идеале стает равно бесконечности (поставьте в формулу 0 Герц частоту). А так как у нас получился делитель напряжения

следовательно, на меньшем сопротивлении падает меньшее напряжение. С ростом частоты сопротивление конденсатора очень сильно уменьшается и поэтому падение напряжения на нем стает почти 0 Вольт, что мы и наблюдали на осциллограмме.

Но на этом ништяки не заканчиваются.

Давайте вспомним, что из себя представляет сигнал с постоянной составляющей. Это есть ничто иное, как сумма переменного сигнала и постоянного напряжения. Взглянув на рисунок ниже, вам все станет ясно.


То есть в нашем случае можно сказать, этот сигнал (ниже на картинке) имеет в своем составе постоянную составляющую, другими словами, постоянное напряжение

Для того, чтобы выделить постоянную составляющую из этого сигнала, нам достаточно прогнать его через нашу интегрирующую цепь. Давайте рассмотрим все это на примере. С помощью нашего генератора функций мы поднимем нашу синусоиду “над полом”, то есть сделаем вот так:

Итак, все как обычно, желтый входной сигнал цепи, красный – выходной. Простая двухполярная синусоида дает нам на выходе RC интегрирующей цепи 0 Вольт:


Чтобы понять, где нулевой уровень сигналов, я их пометил квадратиком:


Теперь давайте я добавлю постоянную составляющую в синусоиду, а точнее – постоянное напряжение, благо это сделать мне позволяет генератор функций:


Как вы видите, как только я поднял синус “над полом”, на выходе цепи я получил постоянное напряжение величиной в 5 Вольт. Именно на 5 Вольт я поднимал сигнал в генераторе функций;-). Цепочка выделила постоянную составляющую из синусоидального приподнятого сигнала без проблем. Чудеса!

Но мы так и не разобрались, почему цепь называется интегрирующей? Кто хорошо учился в школе, в классе эдак 8-9, то наверняка помнит геометрический смысл интеграла – это есть ничто иное, как площадь под кривой.

Давайте рассмотрим тазик с кубиками льда в двухмерной плоскости:


Что будет, если весь лед растает и превратится в воду? Все верно, вода ровным слоем покроет тазик одной плоскостью:


Но какой будет этот уровень воды? Вот именно – средний. Это среднее значение этих башен из кубиков льда. Так вот, интегрирующая цепочка делает то же самое! Тупо усредняет значение сигналов до одного постоянного уровня! Можно сказать, усредняет площадь до одного постоянного уровня.

Но самый смак получается тогда, когда мы подаем на вход прямоугольный сигнал. Давайте так и сделаем. Подадим положительный меандр на RC интегрирующую цепь.


Как вы видите, постоянная составляющая меандра равна половине его амплитуды. Думаю, вы уже и сами догадались, если бы представили тазик с кубиками льда). Или просто подсчитайте площадь каждого импульса и размажьте его равномерным слоем по осциллограмме, как гов… как сливочное масло по хлебу;-)

Ну а теперь самое веселое. Сейчас я буду менять скважность нашего прямоугольного сигнала, так как скважность – это ничто иное, как отношение периода на длительность импульса, следовательно, мы будем менять длительность импульсов.

Уменьшаю длительность импульсов


Увеличиваю длительность импульсов


Если никто ничего до сих пор не заметил, просто взгляните на уровень красной осциллограммы и все станет понятно. Вывод: управляя скважностью, мы можем менять уровень постоянной составляющей. Именно этот принцип и заложен в ШИМ (Широтно-Импульсной Модуляции). О ней как-нибудь поговорим в отдельной статье.

Дифференцирующая цепь

Еще одно ругательное слово, которое пришло с математики – дифференцирующий. Башка начинает сразу же болеть от одного только их произношения. Но, куда деваться? Электроника и математика неразлучные друзья.

А вот и сама дифференциальная цепочка


В схеме мы только переставили резистор и конденсатор местами

Ну а теперь проведем также все опыты, как мы делали с интегрирующей цепью. Для начала подаем на вход дифференциальной цепи низкочастотный двухполярный меандр с частотой в 1,5 Герца и с размахом в 5 Вольт. Желтый сигнал – это сигнал с генератора частоты, красный – с выхода дифференциальной цепочки:


Как вы видите, конденсатор успевает почти полностью разрядится, поэтому у нас получилась вот такая красивая осциллограмма.

Давайте увеличим частоту до 10 Герц


Как видите, конденсатор не успевает разрядиться, как уже приходит новый импульс.

Сигнал в 100 Герц сделал кривую разряда еще менее заметной.


Ну и добавим частоту до 1 Килогерца


Какой на входе, такой и на выходе;-) С такой частотой конденсатор вообще не успевает разряжаться, поэтому вершинки выходных импульсов гладкие и ровные.

Но и на этом тоже ништяки не заканчиваются.

Давайте я подниму входной сигнал над “уровнем моря”, то есть выведу его в положительную часть полностью. Смотрим, что получается на выходе (красный сигнал)


Ничего себе, красный сигнал по форме и по положению остался таким же, посмотрите – в нем нет постоянной составляющей, как в желтом сигнале, который мы подавали из нашего генератора функций.

Могу даже желтый сигнал вывести в отрицательную область, но на выходе мы все равно получим переменную составляющую сигнала без всяких хлопот:


Да и вообще пусть сигнал будет с небольшой отрицательной постоянной составляющей, все равно на выходе мы получим переменную составляющую:


Все то же самое касается и любых других сигналов:



В результате опытов мы видим, что основная функция дифференциальной цепи – это выделение переменной составляющей из сигнала, который содержит в себе как переменную, так и постоянную составляющую. Иными словами – выделение переменного тока из сигнала, который состоит из суммы переменного тока и постоянного тока.

Почему так происходит? Давайте разберемся. Рассмотрим нашу дифференциальную цепь:

Если внимательно рассмотреть эту схему, то мы можем увидеть тот же самый делитель напряжения, как и в интегрирующей цепи. Конденсатор – частотно-зависимый радиоэлемент. Итак, если подать сигнал с частотой в 0 Герц (постоянный ток), то у нас конденсатор тупо зарядится и потом вообще перестанет пропускать через себя ток. Цепь будет в обрыве. Но если мы будем подавать переменный ток, то и через конденсатор он тоже начнет проходить. Чем больше частота – тем меньше сопротивление конденсатора. Следовательно, весь переменный сигнал будет падать на резисторе, с которого мы как раз и снимаем сигнал.

Но если мы будем подавать смешанный сигнал, то есть переменный ток + постоянный ток, то на выходе мы получим просто переменный ток. В этом мы с вами уже убеждались на опыте. Почему так произошло? Да потому что конденсатор не пропускает через себя постоянный ток!

Заключение

Интегрирующую цепь также называют фильтром низких частот (ФНЧ), а дифференцирующую – фильтром высоких частот (ФВЧ). Более подробно про фильтры . Чтобы точнее их сделать, нужно провести расчет на нужную вам частоту. RC цепи используются везде, где надо выделить постоянную составляющую (ШИМ), переменную составляющую (межкаскадное соединение усилителей), выделить фронт сигнала, сделать задержку и тд… По мере глубины погружения в электронику вы будете часто встречаться с ними.

ДИФФЕРЕНЦИРУЮЩАЯ ЦЕПЬ - устройство, предназначенное для дифференцирования по времени электрич. сигналов. Выходная реакция Д. ц. u вых (t ) связана со входным воздействием u вх (t ) соотношением , где - пост. величина, имеющая размерность времени. Различают пассивные и активные Д. ц. Пассивные Д. ц. применяют в импульсных и цифровых устройствах для укорачивания импульсов. Aктивные Д. ц. используют как дифференциаторы в аналоговых вычислит. устройствах. Простейшая пассивная Д. ц. показана на рис. 1, а . Ток через ёмкость пропорционален производной приложенного к ней напряжения . Если параметры Д. ц. выбраны т. о.,

что u c =u вх, то , a . Условие u c =u вх выполняется, если на самой верхней частоте спектра входного сигнала Вариант пассивной Д. ц. показан на рис. 1, б . При условии имеем и

Рис. 1. Схемы пассивных дифференцирующих цепей: а - ёмкостной RC; б - индуктивной RL .

Следовательно, при заданных параметрах Д. ц. дифференцирование тем точнее, чем ниже частоты, на к-рых концентрируется энергия входного сигнала. Однако чем точнее дифференцирование, тем меньше коэфф. передачи цепи и, следовательно, уровень выходного сигнала. Это противоречие устраняется в активных Д. ц., где процесс дифференцирования сочетается с процессом усиления. В активных Д. ц. используют операционные усилители (ОУ), охваченные отрицательной обратной связью (рис. 2). Входное напряжение u вх (t ) дифференцируется цепочкой, образованной последоват. соединением ёмкости С и R экв - эквивалентного сопротивления схемы между зажимами 2-2", а затем усиливается ОУ. Если подать напряжение на инвертирующий вход ОУ, то при условии, что его коэффициент усиления , , получим

Рис. 2. Схема активной дифференцирующей цепи.

Рис. 3. Прохождение импульса через дифференцирующую цепь RC: а - входной импульс, u вх =Е при ; б - напряжение на ёмкости u c (t); в - выходное напряжение .

Для сравнит. оценки активных и пассивных Д. ц. при прочих равных условиях можно использовать отношение . При прохождении через Д. ц. импульсных сигналов происходит уменьшение их длительности, отсюда понятие о Д. ц. как об укорачивающих. Временные диаграммы, иллюстрирующие прохождение импульса прямоугольной формы через пассивную Д. ц., приведены на рис. 3. Предполагается, что, источник входного напряжения характеризуется нулевым внутр. сопротивлением, а Д. ц.- отсутствием паразитных ёмкостей. Наличие внутр. сопротивления приводит к уменьшению амплитуды напряжения на входных клеммах и, следовательно, к уменьшению амплитуд выходных импульсов; наличие паразитных ёмкостей - к затягиванию процессов нарастания и спада выходных импульсов. Аналогичным укорачивающим действием обладают также активные Д. ц.

В импульсных устройствах задающий генератор часто вырабатывает импульсы прямоугольной формы определенной длительности и амплитуды, которые предназначаются для представления чисел и управления элементами вычислительных устройств, устройств обработки информации и др. Однако для правильного функционирования различных элементов в общем случае требуются импульсы вполне определенной формы, отличной от прямоугольной, имеющие заданные длительность и амплитуду. Вследствие этого возникает необходимость предварительно преобразовывать импульсы задающего генератора. Характер преобразования может быть разным. Так, может потребоваться изменить амплитуду или полярность, длительность задающих импульсов, осуществить их задержку во времени.

Преобразования в основном осуществляются с помощью линейных цепей - четырехполюсников, которые могут быть пассивными и актив­ными. В рассматриваемых цепях пассивные четырехполюсники не содер­жат в своем составе источников питания, активные используют энергию внутренних или внешних источников питания. С помощью линейных цепей осуществляются такие преобразования, как дифференцирование, интегрирование, укорочение импульсов, изменение амплитуды и поляр­ности, задержка импульсов во времени. Операции дифференцирования, интегрирования и укорочения импульсов выполняются соответственно дифференцирующими, интегрирующими и укорачивающими цепями. Изменение амплитуды и полярности импульса может производиться с помощью импульсного трансформатора, а задержка его во времени - линией задержки.

Интегрирующая цепь . На рис. 19.5 приведена схема простейшей цепи (пассивного четырехполюсника), с помощью которой можно выполнить операцию интегрирования входного электрического сигнала, подан­ного на зажимы 1-1 | , если выходной сигнал снимать с зажимов 2-2".

Составим уравнение цепи для мгновенных значений токов и напря­жений по второму закону Кирхгофа:

Отсюда следует, что ток цепи будет изменяться по закону

Если выбрать постоянную временидостаточно большой, то вторым слагаемым в последнем уравнении можно пренебречь, тогдаi(t) = u вх (t)/R.

Напряжение на конденсаторе (на зажимах 2-2") будет равно

(19.1)

Из (19.1) видно, что цепь, приведенная на рис. 19.5, выполняет опе­рацию интегрирования входного напряжения и умножения его на коэф­фициент пропорциональности, равный обратному значению постоянной времени цепи:

Временная диаграмма выходного напряжения интегрирующей цепи при подаче на вход последовательности прямоугольных импульсов показана на рис. 19.6.

Дифференцирующая цепь . С помощью цепи, схема которой приведена на рис. 19.7 (пассивного четырехполюсника), можно выполнять операцию дифференцирования входного электрического сигнала, поданного на зажимы 1-1", если выходной сигнал снимать с зажимов 2-2". Составим уравнение цепи для мгновенных значений тока и напряжений по второму закону Кирхгофа:

Если сопротивление R мало и членом i(t)R можно пренебречь, то ток в цепи и выходное напряжение цепи, снимаемое с R,

(19.2)

Анализируя (19.2), можно видеть, что с помощью рассматриваемой цепи выполняют операции дифференцирования входного напряжения и умножения его на коэффициент пропорциональности, равный постоян­ной времени τ = RC. Форма выходного напряжения дифференцирующей цепи при подаче на вход серии прямоугольных импульсов приведена на рис. 19.8. В этом случае теоретически выходное напряжение должно представлять собой знакопеременные импульсы бесконечно большой амплитуды и малой (близкой к нулю) длительности.

Однако вследствие различия свойств реальной и идеальной диф­ференцирующих цепей, а также конечной крутизны фронта импульса на выходе получают импульсы, амплитуда которых меньше амплитуды входного сигнала, а длительность их определяется как t и = (3 ÷ 4) τ = (3 ÷ 4)RС.

В общем случае форма выходного напряжения зависит от соотно­шения длительности импульса входного сигнала t и и постоянной вре­мени дифференцирующей цепи τ. В момент t 1 входное напряжение при­ложено к резистору R, так как напряжение на конденсаторе скачком изменяться не может. Затем напряжение на конденсаторе возрастает по экспоненциальному закону, а напряжение на резисторе R, т. е. выходное напряжение, снижается по экспоненциальному закону и становится рав­ным нулю в момент t 2 , когда зарядка конденсатора закончится. При малых значениях τ длительность выходного напряжения мала. Когда напряжение u BX (t) становится равным нулю, конденсатор начинает разряжаться через резистор R. Таким образом формируется импульс обратной полярности.

П
ассивные интегрирующие и дифференцирующие цепи имеют сле­дующие недостатки: обе математические операции реализуются прибли­женно, с известными погрешностями. Приходится вводить корректи­рующие звенья, которые, в свою очередь, сильно снижают амплитуду выходного импульса, т. е. без промежуточного усиления сигналов практически невозможныn-кратные дифференцирование и интегриро­вание.

Эти недостатки не свойственны активным дифференцирующему и интегрирующему устройствам. Одним из возможных способов реали­зации этих устройств является применение операционных усилителей (см. гл. 18).

Активное дифференцирующее устройство . Схема такого устройства на операционном усилителе приведена на рис. 19.9. Ко входу 1 подключен конденсатор С, а в цепь обратной связи включен резистор R oc . Так как входное сопротивление чрезвычайно велико (R вх -> ∞), то входной ток обтекает схему по пути, указанному пунктиром. С другой сторо­ны, напряжение и вхОУ в этом включении очень мало, так как К u -> ∞, поэтому потенциал точки В схемы практически равен нулю. Следовательно, ток на входе

(19.3)

Ток на выходе i(t) одновременно является зарядным током кон­денсатора С: dq= Сdu BX (t), откуда

(19.4)

Приравнивая левые части уравнений (19.3) и (19.4), можно написать -и вых (t)/R oc = С du вх (t)/dt, откуда

(19.5)

Таким образом, выходное напряжение операционного усилителя является произведением производной входного напряжения по времени, умноженной на постоянную времени τ = R ОС С.

А
ктивное интегрирующее устройство
. Схема интегрирующего устройст­ва на операционном усилителе, приведенная на рис. 19.10, отличается от дифференцирующего устройства рис. 19.9 только тем, что конденсатор С и резистор R oc (на рис. 19.10 -R 1) поменялись местами. По-прежнему R вх -> ∞ и коэффициент усиления по напряжению К u -> ∞. Следовательно, в устройстве конденсатор С заряжается током i(t) =u BX (t)/R 1 . Так как напряжение на конденсаторе практически равно выходному напряжению (φ B = 0), а операционный усилитель изменяет фазу входного сигнала на выходе на угол π, имеем

(19.6)

Таким образом, выходное напряжение активного интегрирующего устройства есть произведение определенного интеграла от входного напряжения по времени на коэффициент 1/τ.

Постоянная времени цепи RC

Электрическая цепь RC

Рассмотрим ток в электрической цепи, состоящей из конденсатора ёмкостью C и резистора сопротивлением R, соединённых параллельно.
Значение тока заряда или разряда конденсатора определится выражением I = C(dU/dt) , а значение тока в резисторе, согласно закону Ома, составит U/R , где U - напряжение заряда конденсатора.

Из рисунка видно, что электрический ток I в элементах C и R цепи будет иметь одинаковое значение и противоположное направление, согласно закону Кирхгофа. Следовательно, его можно выразить следующим образом:

Решаем дифференциальное уравнение C(dU/dt)= -U/R

Интегрируем:

Из таблицы интегралов здесь используем преобразование

Получаем общий интеграл уравнения: ln|U| = - t/RC + Const .
Выразим из него напряжение U потенцированием: U = e -t/RC * e Const .
Решение примет вид:

U = e -t/RC * Const.

Здесь Const - константа, величина, определяемая начальными условиями.

Следовательно, напряжение U заряда или разряда конденсатора будет меняться во времени по экспоненциальному закону e -t/RC .

Экспонента - функция exp(x) = e x
e – Математическая константа, приблизительно равная 2.718281828...

Постоянная времени τ

Если конденсатор емкостью C последовательно с резистором сопротивлением R подключить к источнику постоянного напряжения U , в цепи пойдёт ток, который за любое время t зарядит конденсатор до значения U C и определится выражением:

Тогда напряжение U C на выводах конденсатора будет увеличиваться от нуля до значения U по экспоненте:

U C = U(1 - e -t/RC )

При t = RC , напряжение на конденсаторе составит U C = U(1 - e -1 ) = U(1 - 1/e) .
Время, численно равное произведению RC , называется постоянной времени цепи RC и обозначается греческой буквой τ .

Постоянная времени τ = RC

За время τ конденсатор зарядится до (1 - 1/e )*100% ≈ 63,2% значения U .
За время 3τ напряжение составит (1 - 1/e 3)*100% ≈ 95% значения U .
За время 5τ напряжение возрастёт до (1 - 1/e 5)*100% ≈ 99% значения U .

Если к конденсатору емкостью C , заряженному до напряжения U , параллельно подключить резистор сопротивлением R , тогда в цепи пойдёт ток разряда конденсатора.

Напряжение на конденсаторе при разряде будет составлять U C = Ue -t/τ = U/e t/τ .

За время τ напряжение на конденсаторе уменьшится до значения U/e , что составит 1/e *100% ≈ 36.8% значения U .
За время 3τ конденсатор разрядится до (1/e 3)*100% ≈ 5% от значения U .
За время 5τ до (1/e 5)*100% ≈ 1% значения U .

Параметр τ широко применяется при расчётах RC -фильтров различных электронных цепей и узлов.

Связь мгновенных значений напряжений и токов на элементах

Электрической цепи

Для последовательной цепи, содержащей линейные резистор R, катушку индуктивности L и конденсатор С, при ее подключении к источнику с напряжением u (см. рис. 1) можно записать

где х – искомая функция времени (напряжение, ток, потокосцепление и т.п.); - известное возмущающее воздействие (напряжение и (или) ток источника электрической энергии); - к-й постоянный коэффициент, определяемый параметрами цепи.

Порядок данного уравнения равен числу независимых накопителей энергии в цепи, под которыми понимаются катушки индуктивности и конденсаторы в упрощенной схеме, получаемой из исходной путем объединения индуктивностей и соответственно емкостей элементов, соединения между которыми являются последовательными или параллельными.

В общем случае порядок дифференциального уравнения определяется соотношением

, (3)

где и - соответственно число катушек индуктивности и конденсаторов после указанного упрощения исходной схемы; - число узлов, в которых сходятся только ветви, содержащие катушки индуктивности (в соответствии с первым законом Кирхгофа ток через любую катушку индуктивности в этом случае определяется токами через остальные катушки); - число контуров схемы, ветви которых содержат только конденсаторы (в соответствии со вторым законом Кирхгофа напряжение на любом из конденсаторов в этом случае определяется напряжениями на других).

Наличие индуктивных связей на порядок дифференциального уравнения не влияет.

Как известно из математики, общее решение уравнения (2) представляет собой сумму частного решения исходного неоднородного уравнения и общего решения однородного уравнения, получаемого из исходного путем приравнивания его левой части к нулю. Поскольку с математической стороны не накладывается каких-либо ограничений на выбор частного решения (2), применительно к электротехнике в качестве последнего удобно принять решение , соответствующее искомой переменной х в установившемся послекоммутационном режиме (теоретически для ).

Частное решение уравнения (2) определяется видом функции , стоящей в его правой части, и поэтому называется принужденной составляющей. Для цепей с заданными постоянными или периодическими напряжениями (токами) источников принужденная составляющая определяется путем расчета стационарного режима работы схемы после коммутации любым из рассмотренных ранее методов расчета линейных электрических цепей.

Вторая составляющая общего решения х уравнения (2) – решение (2) с нулевой правой частью – соответствует режиму, когда внешние (принуждающие) силы (источники энергии) на цепь непосредственно не воздействуют. Влияние источников проявляется здесь через энергию, запасенную в полях катушек индуктивности и конденсаторов. Данный режим работы схемы называется свободным, а переменная - свободной составляющей.

В соответствии с вышесказанным, . общее решение уравнения (2) имеет вид

(4)

Соотношение (4) показывает, что при классическом методе расчета послекоммутационный процесс рассматривается как наложение друг на друга двух режимов – принужденного, наступающего как бы сразу после коммутации, и свободного, имеющего место только в течение переходного процесса.

Необходимо подчеркнуть, что, поскольку принцип наложения справедлив только для линейных систем, метод решения, основанный на указанном разложении искомой переменной х, справедлив только для линейных цепей.

Начальные условия. Законы коммутации

В соответствии с определением свободной составляющей в ее выражении имеют место постоянные интегрирования , число которых равно порядку дифференциального уравнения. Постоянные интегрирования находятся из начальных условий, которые принято делить на независимые и зависимые. К независимым начальным условиям относятся потокосцепление (ток) для катушки индуктивности и заряд (напряжение) на конденсаторе в момент времени (момент коммутации). Независимые начальные условия определяются на основании законов коммутации (см. табл. 2).

Таблица 2. Законы коммутации

See more at: http://www.toehelp.ru/theory/toe/lecture24/lecture24.html#sthash.jqyFZ18C.dpuf

Интегрирующая цепь RC

Рассмотрим электрическую цепь из резистора сопротивлением R и конденсатора ёмкостью C , представленную на рисунке.

Элементы R и C соединены последовательно, значит, ток в их цепи можно выразить, исходя из производной напряжения заряда конденсатора dQ/dt = C(dU/dt) и закона Ома U/R . Напряжение на выводах резистора обозначим U R .
Тогда будет иметь место равенство:

Проинтегрируем последнее выражение . Интеграл левой части уравнения будет равен U out + Const . Перенесём постоянную составляющую Const в правую часть с тем же знаком.
В правой части постоянную времени RC вынесем за знак интеграла:

В итоге получилось, что выходное напряжение U out прямо-пропорционально интегралу напряжения на выводах резистора, следовательно, и входному току I in .
Постоянная составляющая Const не зависит от номиналов элементов цепи.

Чтобы обеспечить прямую пропорциональную зависимость выходного напряжения U out от интеграла входного U in , необходима пропорциональность входного напряжения от входного тока.

Нелинейное соотношение U in /I in во входной цепи вызвано тем, что заряд и разряд конденсатора происходит по экспоненте e -t/τ , которая наиболее нелинейна при t/τ ≥ 1, то есть, когда значение t соизмеримо или больше τ .
Здесь t - время заряда или разряда конденсатора в пределах периода.
τ = RC - постоянная времени - произведение величин R и C .
Если взять номиналы RC цепи, когда τ будет значительно больше t , тогда начальный участок экспоненты для короткого периода (относительно τ ) может быть достаточно линейным, что обеспечит необходимую пропорциональность между входным напряжением и током.

Для простой цепи RC постоянную времени обычно берут на 1-2 порядка больше периода переменного входного сигнала, тогда основная и значительная часть входного напряжения будет падать на выводах резистора, обеспечивая в достаточной степени линейную зависимость U in /I in ≈ R .
В таком случае выходное напряжение U out будет с допустимой погрешностью пропорционально интегралу входного U in .
Чем больше величины номиналов RC , тем меньше переменная составляющая на выходе, тем более точной будет кривая функции.

В большинстве случаев, переменная составляющая интеграла не требуется при использовании таких цепей, нужна только постоянная Const , тогда номиналы RC можно выбирать по возможности большими, но с учётом входного сопротивления следующего каскада.

В качестве примера, сигнал с генератора - положительный меандр 1V периодом 2 mS подадим на вход простой интегрирующей цепи RC с номиналами:
R = 10 kOhm, С = 1 uF. Тогда τ = RC = 10 mS.

В данном случае постоянная времени лишь в пять раз больше времени периода, но визуально интегрирование прослеживается в достаточной степени точно.
График показывает, что выходное напряжение на уровне постоянной составляющей 0.5в будет треугольной формы, потому как участки, не меняющиеся во времени, для интеграла будут константой (обозначим её a ), а интеграл константы будет линейной функцией. ∫adx = ax + Const . Величина константы a определит тангенса угла наклона линейной функции.

Проинтегрируем синусоиду, получим косинус с обратным знаком ∫sinxdx = -cosx + Const .
В данном случае постоянная составляющая Const = 0.

Если подать на вход сигнал треугольной формы, на выходе будет синусоидальное напряжение.
Интеграл линейного участка функции - парабола. В простейшем варианте ∫xdx = x 2 /2 + Const .
Знак множителя определит направление параболы.

Недостаток простейшей цепочки в том, что переменная составляющая на выходе получается очень маленькой относительно входного напряжения.

Рассмотрим в качестве интегратора Операционный Усилитель (ОУ) по схеме, показанной на рисунке.

С учётом бесконечно большого сопротивления ОУ и правила Кирхгофа здесь будет справедливо равенство:

I in = I R = U in /R = - I C .

Напряжение на входах идеального ОУ здесь равно нулю, тогда на выводах конденсатора U C = U out = - U in .
Следовательно, U out определится, исходя из тока общей цепи.

При номиналах элементов RC , когда τ = 1 Sec, выходное переменное напряжение будет равно по значению интегралу входного. Но, противоположно по знаку. Идеальный интегратор-инвертор при идеальных элементах схемы.

Дифференцирующая цепь RC

Рассмотрим дифференциатор с применением Операционного Усилителя.

Идеальный ОУ здесь обеспечит равенство токов I R = - I C по правилу Кирхгофа.
Напряжение на входах ОУ равно нулю, следовательно, выходное напряжение U out = U R = - U in = - U C .
Исходя из производной заряда конденсатора, закона Ома и равенства значений токов в конденсаторе и резисторе, запишем выражение:

U out = RI R = - RI C = - RC(dU C /dt) = - RC(dU in /dt)

Отсюда видим, что выходное напряжение U out пропорционально производной заряда конденсатора dU in /dt , как скорости изменения входного напряжения.

При величине постоянной времени RC , равной единице, выходное напряжение будет равно по значению производной входного напряжения, но противоположно по знаку. Следовательно, рассмотренная схема дифференцирует и инвертирует входной сигнал.

Производная константы равна нулю, поэтому постоянная составляющая при дифференцировании на выходе будет отсутствовать.

В качестве примера, подадим на вход дифференциатора сигнал треугольной формы. На выходе получим прямоугольный сигнал.
Производная линейного участка функции будет константой, знак и величина которой определится наклоном линейной функции.

Для простейшей дифференцирующей цепочки RC из двух элементов используем пропорциональную зависимость выходного напряжения от производной напряжения на выводах конденсатора.

U out = RI R = RI C = RC(dU C /dt)

Если взять номиналы элементов RC, чтобы постоянная времени была на 1-2 порядка меньше длины периода, тогда отношение приращения входного напряжения к приращению времени в пределах периода может определять скорость изменения входного напряжения в определённой степени точно. В идеале это приращение должно стремиться к нулю. В таком случае основная часть входного напряжения будет падать на выводах конденсатора, а выходное будет составлять незначительную часть от входного, поэтому для вычислений производной такие схемы практически не используются.

Наиболее часто дифференцирующие и интегрирующие цепи RC применяют для изменения длины импульса в логических и цифровых устройствах.
В таких случаях номиналы RC рассчитывают по экспоненте e -t/RC исходя из длины импульса в периоде и требуемых изменений.
Например, ниже на рисунке показано, что длина импульса T i на выходе интегрирующей цепочки увеличится на время 3τ . Это время разряда конденсатора до 5% амплитудного значения.

На выходе дифференцирующей цепи амплитудное напряжение после подачи импульса появляется мгновенно, так как на выводах разряженного конденсатора оно равно нулю.
Далее следует процесс заряда и напряжение на выводах резистора убывает. За время 3τ оно уменьшится до 5% амплитудного значения.

Здесь 5% - величина показательная. В практических расчётах этот порог определится входными параметрами применяемых логических элементов.

С одним из плеч, обладающих ёмкостным сопротивлением переменному току.

Энциклопедичный YouTube

    1 / 3

    Электрические цепи (часть 1)

    Лекция 27. Заряд и разряд конденсатора через сопротивление (RC-цепочка)

    Лекция 29. Прохождение переменного тока через RC-цепочку

    Субтитры

    Мы провели много времени, обсуждая электростатические поля и потенциал заряда, или потенциальную энергию неподвижного заряда. Ну а теперь давайте посмотрим, что произойдет, если позволить заряду двигаться. И это будет намного интереснее, ведь вы узнаете, как работает большая часть современного мира вокруг нас. Итак, предположим, что есть источник напряжения. Как бы мне его нарисовать? Пусть будет так. Возьму желтый цвет. Вот это источник напряжения, также известный нам как батарейка. Здесь положительный контакт, здесь отрицательный. Принцип работы батарейки - это тема для отдельного видео, которое я обязательно запишу. Стоит сказать только, что неважно, сколько заряда - я все вам объясню через секунду - так вот, неважно, сколько заряда перетекает с одной стороны батарейки в другую, каким-то образом напряжение остается постоянным. И это не совсем понятная вещь, ведь мы уже изучили конденсаторы, и еще больше о них узнаем в контексте цепей, но мы уже знаем о конденсаторах то, что если убрать часть заряда с одного из его концов, то общее напряжение на конденсаторе уменьшится. Но батарейка - волшебная вещь. Кажется, ее изобрел Вольта, и поэтому мы измеряем напряжение в вольтах. Но даже когда одна сторона волшебной батарейки теряет заряд, напряжение, или потенциал между двумя полюсами, остается постоянным. В этом и заключается особенность батарейки. Итак, предположим, что есть этот магический инструмент. У вас наверняка найдется батарейка в калькуляторе или телефоне. Посмотрим, что произойдет если позволим заряду двигаться с одного полюса на другой. Предположим, что у меня есть проводник. Идеальный проводник. Его нужно изображать прямой линией, которая у меня, к сожалению, совсем не получается. Ну вот примерно так. Что же я сделал? В процессе соединения положительного контакта с отрицательным, я показываю вам стандартную систему обозначений для инженеров, электриков, и так далее. Так что возьмите себе на заметку, возможно, вам это когда-нибудь пригодится. Эти линии представляют собой провода. Их необязательно рисовать под прямыми углами. Я так делаю исключительно для наглядности. Предполагается, что этот провод - идеальный проводник, по которому заряд течет свободно, не встречая препятствий. Вот эти зигзаги - это резистор, и он как раз и будет препятствием для заряда. Он не даст заряду двигаться на максимальной скорости. А за ним, разумеется, снова наш идеальный проводник. Итак, в какую же сторону потечет заряд? Раньше я уже говорил, в электрических цепях текут электроны. Электроны - это такие маленькие частицы, которые очень быстро вращаются вокруг ядра атома. И обладают текучестью, которая позволяет им двигаться через проводник. Само движение объектов, если электроны вообще можно назвать объектами - некоторые поспорят, что электроны - просто набор уравнений - но само их движение происходит от отрицательного контакта к положительному. Люди, изначально придумавшие схемы электронных цепей, пионеры электроинженерии, электрики или кто-то там еще, решили, и мне кажется, исключительно, чтобы всех запутать, что ток течет от положительного к отрицательному. Именно так. Поэтому направление тока обычно указывается в эту сторону, а ток обозначается латинской буквой I. Итак, что такое ток? Ток это… Погодите. Прежде, чем я расскажу вам, что такое ток, запомните, большинство учебников, особенно если вы станете инженером, будут утверждать, что ток течет от положительного контакта к отрицательному, но реальный поток частиц идет от отрицательного к положительному. Большие и тяжелые протоны и нейтроны никак не смогут двигаться в эту сторону. Просто сравните размеры протона и электрона, и вы поймете, насколько это безумно. Это электроны, маленькие супербыстрые частицы, что движутся через проводник из отрицательного контакта. Поэтому напряжение можно представить как отсутствие потока электронов в эту сторону. Не хочу вас запутать. Но, как бы там ни было, просто запомните, что это общепринятый стандарт. Но реальность, в какой-то мере, противоположна ему. Так что же такое резистор? Когда ток течет - и я хочу изобразить это как можно ближе к реальности, чтобы вы хорошо видели, что же происходит. Когда электроны текут - вот тут такие маленькие электроны, идут по проводу - мы полагаем, что этот провод настолько удивительный, что они никогда не сталкиваются с его атомами. Но когда электроны добираются до резистора, они начинают врезаться в частицы. Они начинают сталкиваться с другими электронами в этом окружении. Вот это и есть резистор. Они начинают сталкиваться с другими электронами в веществе, сталкиваются с атомами и молекулами. И из-за этого электроны замедляются, сталкиваясь с частицами. Поэтому, чем больше частиц у них на пути, или чем меньше для них места, тем сильнее материал замедляет движение электронов. И как мы позже с вами увидим, чем он длиннее, тем больше у электрона шанс врезаться во что-нибудь. Вот это и есть резистор, он оказывает сопротивление и определяет скорость тока. «Resistance» - это английское слово, обозначающее сопротивление. Итак, ток, хотя и принято, что он течет из положительного к отрицательному, это просто поток заряда за секунду. Давайте запишем. Мы немного отклоняемся от темы, но я думаю, вы все поймете. Ток - это поток заряда, или изменение заряда за секунду, или, скорее, за изменение во времени. Что же такое напряжение? Напряжение - это то, как сильно заряд притягивается к контакту. Поэтому если между этими двумя контактами высокое напряжение, то электроны сильно притягиваются к другому контакту. И если напряжение еще выше, то электроны притягиваются еще сильнее. Поэтому до того, как стало ясно, что напряжение - это всего лишь разность потенциалов, его, называли электродвижущей силой. Но сейчас мы знаем, что это не сила. Это разность потенциалов, мы даже можем назвать это электрическим давлением, и раньше напряжение так и называли - электрическое давление. Как сильно электроны притягиваются к другому контакту? Как только мы откроем электронам путь через цепь, они начнут двигаться. И, поскольку мы считаем эти провода идеальными, не имеющими сопротивления, электроны смогут двигаться максимально быстро. Но, когда они доберутся до резистора, начнут сталкиваться с частицами, и это ограничит их скорость. Поскольку этот объект ограничивает скорость электронов, то неважно, как быстро они будут двигаться после, резистор был ограничителем. Думаю, вы понимаете. Таким образом, хотя электроны здесь и могут двигаться очень быстро, им придется замедлиться здесь, и, даже ускорившись потом, электроны в начале не смогут двигаться быстрее, чем через резистор. Почему же так происходит? Если эти электроны медленнее, то ток здесь меньше, ведь ток это скорость, с которой движется заряд. Поэтому, если ток здесь ниже, а здесь - выше, то начнут образовываться излишки заряда где-то здесь, пока ток будет ждать, чтобы пройти через резистор. И мы знаем, что так не бывает, все электроны двигаются через цепь с одинаковой скоростью. И я иду против общепринятых стандартов, предполагающих, что положительны частицы как-то движутся в этом направлении. Но я хочу, чтобы вы понимали, что происходит в цепи, потому что тогда сложные задачи не будут казаться такими… Такими пугающими, что ли. Мы знаем, что ток, или сила тока, пропорционален напряжению всей цепи, и это называется законом Ома. Закон Ома. Итак, мы знаем, что напряжение пропорционально силе тока на всей цепи. Напряжение равняется силе тока, умноженной на сопротивление, или, иначе, напряжение, деленое на сопротивление равняется силе тока. Это закон Ома, и он действует всегда, если температура остается постоянной. Позже мы изучим это подробнее, и узнаем, что когда резистор нагревается, атомы и молекулы двигаются быстрее, кинетическая энергия увеличивается. И тогда электроны чаще сталкиваются с ними, поэтому сопротивление увеличивается с температурой. Но, если мы предположим, что для некоего материала температура постоянна, а позже мы узнаем, что у разных материалов разные коэффициенты сопротивления. Но для конкретного материала при постоянной температуре для заданной формы, напряжение на резисторе, деленное на его сопротивление, равняется силе тока, текущего через него. Сопротивление объекта измеряется в омах, и обозначается греческой буквой Омега. Простой пример: предположим, что это 16-и вольтовая батарейка, имеющая 16 вольт разности потенциалов между положительным контактом и отрицательным. Итак, 16-и вольтовая батарейка. Предположим, что сопротивление резистора - 8 Ом. Чему же равна сила тока? Я продолжаю игнорировать общепринятый стандарт, хотя, давайте вернемся к нему. Чему равна сила тока в цепи? Здесь все вполне очевидно. Нужно просто применить закон Ома. Его формула: V = IR. Итак, напряжение - 16 вольт, и оно равняется силе тока, умноженной на сопротивление, 8 Ом. То есть сила тока равна 16 Вольт разделить на 8 Ом, что равняется 2. 2 амперам. Амперы обозначаются большой буквой А, и в них измеряется сила тока. Но, как мы знаем, ток - это количество заряда за некоторое время, то есть два кулона в секунду. Итак, 2 кулона в секунду. Ну ладно, прошло уже больше 11 минут. Нужно остановиться. Вы узнали основы закона Ома и, может быть, стали понимать, что же происходит в цепи. До встречи в следующем видео. Subtitles by the Amara.org community

Интегрирующая RC-цепочка

Если входной сигнал подаётся к V in , а выходной снимается с V c (см. рисунок), то такая цепь называется цепью интегрирующего типа.

Реакция цепи интегрирующего типа на единичное ступенчатое воздействие с амплитудой V определяется следующей формулой:

U c (t) = U 0 (1 − e − t / R C) . {\displaystyle \,\!U_{c}(t)=U_{0}\left(1-e^{-t/RC}\right).}

Таким образом, постоянная времени τ этого апериодического процесса будет равна

τ = R C . {\displaystyle \tau =RC.}

Интегрирующие цепи пропускают постоянную составляющую сигнала, отсекая высокие частоты, то есть являются фильтрами нижних частот . При этом чем выше постоянная времени τ {\displaystyle \tau } , тем ниже частота среза. В пределе пройдёт только постоянная составляющая. Это свойство используется во вторичных источниках питания, в которых необходимо отфильтровать переменную составляющую сетевого напряжения. Интегрирующими свойствами обладает кабель из пары проводов, поскольку любой провод является резистором, обладая собственным сопротивлением, а пара идущих рядом проводов ещё и образуют конденсатор, пусть и с малой ёмкостью. При прохождении сигналов по такому кабелю, их высокочастотная составляющая может теряться, причём тем сильнее, чем больше длина кабеля.


Дифференцирующая RC-цепочка

Дифференцирующая RC-цепь получается, если поменять местами резистор R и конденсатор С в интегрирующей цепи. При этом входной сигнал идёт на конденсатор, а выходной снимается с резистора. Для постоянного напряжения конденсатор представляет собой разрыв цепи, то есть постоянная составляющая сигнала в цепи дифференцирующего типа будет отсечена. Такие цепи являются фильтрами верхних частот . И частота среза в них определяется всё той же постоянной времени τ {\displaystyle \tau } . Чем больше τ {\displaystyle \tau } , тем ниже частота, которая может быть без изменений пропущена через цепь.

Дифференцирующие цепи имеют ещё одну особенность. На выходе такой цепи один сигнал преобразуется в два последовательных скачка напряжения вверх и вниз относительно базы с амплитудой, равной входному напряжению. Базой является либо положительный вывод источника, либо "земля", в зависимости от того, куда подключён резистор. Когда резистор подключён к источнику, амплитуда положительного выходного импульса будет в два раза выше напряжения питания. Этим пользуются для умножения напряжения, а так же, в случае подключения резистора к "земле", для формирования двуполярного напряжения из имеющегося однополярного.