Домой / Уроки по Windows / Подписка на новости. Самое главное о GPS-навигации: что такое GPS и зачем он нужен? Что такое gps в мобильном телефоне

Подписка на новости. Самое главное о GPS-навигации: что такое GPS и зачем он нужен? Что такое gps в мобильном телефоне

GPS или Global Positioning System — это спутниковая система навигации, которая позволяет определять местоположение едва ли не в любом месте Земли и практически при любой погоде. Система разработана, реализована и эксплуатируется Министерством обороны США. Несмотря на это, система используется и для гражданских целей, представлена в том числе в мобильных устройствах. На момент написания статьи в смартфонах используются три основных навигационных системы: GPS, ГЛОНАСС и Beidou.

Спутниковая навигационная система в смартфоне необходима для определения местоположения. Например, с ее помощью вы можете пользоваться картами и навигатором. Кроме того, навигация используется и многими приложениями для определения местоположения пользователя. Так, это могут быть виджеты погоды, приложения поисковых систем, браузеры и т.д. В современных версиях Android пользователь сам вправе решать, какому из приложений предоставлять доступ к геолокации.

Во многих случаях навигационная система работает вместе с мобильным интернетом (позволяет определять более точное местоположение), однако может использоваться и самостоятельно. К примеру, если взять популярные карты, то они обычно загружаются из интернета по мере необходимости, но можно скачать и офлайн-карты, пользоваться которыми можно без доступа к интернету.

Как пользоваться GPS?

Включить геолокацию можно с помощью панели быстрого доступа.

Причем можно выбирать, какие источники используются.

Это же можно сделать через раздел меню «Местоположение».

Аналогично — с другими приложениями с доступом к геолокации.

Глобальная система позиционирования – Global Positioning System – появилась в 50-е благодаря запуску спутника. Когда первый советский спутник вышел на орбиту, американцы обратили внимание: при отдалении он равномерно меняет частоту сигнала. Ученые проанализировали данные и поняли, что спутниковый сигнал позволяет точно определить координаты объектов на земле, а также скорость их передвижения. Первыми систему GPS взяли на вооружение военные: Министерство обороны запустило спутниковую навигацию в своих целях, но уже через несколько лет она стала доступна гражданским.

Сейчас на околоземной орбите находятся 24 спутника, которые передают сигналы привязки. Число спутников периодически меняется, но всегда остается достаточным, чтобы поддерживать бесперебойную работу Global Positioning System. На случай форс-мажора предусмотрены запасные спутники, и каждое десятилетие на орбиту выходят новые, модернизированные космические аппараты, потому что ничто не должно нарушить режим работы GPS.

Спутники вращаются по шести орбитам, образуя взаимосвязанную сеть. Ею управляют специальные станции GPS, которые расположены в тропиках, но связаны с координационным центром в Соединенных Штатах. Благодаря этой сети вы можете узнать точные координаты человека, машины или самолета со скоростью прохождения сигнала от спутников, то есть практически мгновенно, а точность показаний не зависит от погодных условий и времени суток. При этом само по себе использование Global Positioning System – бесплатное, и единственное, что нужно, чтобы пользоваться этой навигационной системой, – навигатор или другое устройство, поддерживающее функцию джипиэс.

Принцип работы GPS

В основе технологии – простой навигационный принцип маркерных объектов, который использовался задолго до появления GPS. Маркерный объект – это ориентир, координаты которого точно известны. Для определения координат объекта нужно знать также расстояние от него до маркерного объекта, тогда можно провести на карте линии в сторону маркеров от возможного местоположения: точка пересечения этих линий и будет координатами.

Спутники на околоземной орбите играют в GPS роль маркерных объектов. Они быстро вращаются, но их местоположение постоянно отслеживается, а в каждом навигаторе есть приемник, настроенный на нужную частоту. Спутники посылают сигналы, в которых закодирован большой объем информации, включая точное время. Данные точного времени – одни из самых важных для определения географических координат: ориентируясь на разницу между отдачей и приемом радиосигнала, спутники вычисляют расстояние между собой и навигатором.

Как работает GPS в смартфонах

Навигаторы – один из самых востребованных товаров на рынке гаджетов, по популярности их обгоняют только смартфоны. Но и в смартфоны производители встраивают чипы GPS, чтобы устройство могло выполнять функции навигатора. Однако здесь пользователя может подстерегать ловушка, потому что в погоне за прибылью производители допускают умышленные или случайные неточности в описании своего товара, позволяя покупателям перепутать технологии GPS и AGPS.

Джипиэс – бесплатная навигационная система высокой точности. Подписки на нее нет и быть не может, потому что американцы позволяют пользоваться своими спутниками для навигации безвозмездно. Владельцы смартфонов если и оплачивают, то только приложения или карты. У приемников GPS есть небольшие минусы: они работают только на улице, а из-за плохой погоды могут возникнуть проблемы с приемом сигнала от спутника, но эти недостатки решили с помощью технологии A-GPS (не путать с AGPS). Суть в том, что сигнал от приемника перенаправляют на сервер, на котором содержится вся информация о положении спутников, поэтому трудностей с приемом сигнала не существует. A-GPS используют все современные автомобильные навигаторы.

Но существует также сотовая навигация AGPS – она работает только в зоне покрытия сотовой сети и определяет местоположение с точностью до 500 м. Она менее точная в сравнении с GPS, дает общее представление о месте, где вы находитесь, зато предлагает спутниковую карту окрестностей. Важно, чтобы была подключена услуга мобильного интернета, а на счету оставались деньги. С сервисом AGPS работают Google Maps. Зачастую возможностей сотовой навигации достаточно, но ее все равно не стоит путать с точной и бесплатной системой GPS.

Виды GPS-устройств

Самое простое навигационное устройство – внешний приемник. Он обращается к спутникам и принимает от них сигнал, но чтобы вы могли воспользоваться информацией, приемник нужно подключить к другому устройству – например, смартфону или ноутбуку, благо, он совместим со всеми востребованными гаджетами и программами. В крайнем случае вам потребуется карта. Приемники GPS используют пешеходные туристы: устройство недорогое, а для расшифровки информации, которую оно принимает, можно пользоваться даже обычной туристической картой местности. Нужно лишь, чтобы на нее была наложена навигационная сетка.

Но самое востребованное сегодня GPS-устройство – это автомобильный навигатор. Он намного сложнее и функциональнее приемника: навигатор больше похож на уменьшенную версию компьютера. Весь необходимый софт уже установлен производителем, операционная система закрытая. К навигации прибавляют много дополнительных функций, включая выход в интернет.

Отдельный класс устройств – смартфоны со встроенными приемниками GPS. Не путайте их с моделями, использующими сотовую навигацию! Система работает на смартфонах не так гладко, как на самостоятельных устройствах. Не все модели позволяют поставить полноценный навигационный софт, а если пользоваться онлайн-решениями, то функция станет недоступна при отключении интернета, и тогда исчезнет одно из преимуществ технологии: постоянный доступ. Однако смартфоны со спутниковой навигацией подходят для пешеходов – ориентироваться удобно и данные точные, поэтому вы не заблудитесь даже в непроходимой чаще.

Спутник системы GPS на орбите

Основной принцип использования системы - определение местоположения путём измерения моментов времени приема синхронизированного сигнала от навигационных спутников до потребителя. Расстояние вычисляется по времени задержки распространения сигнала от посылки его спутником до приёма антенной GPS-приёмника. То есть, для определения трёхмерных координат GPS-приёмнику нужно иметь четыре уравнения: «расстояние равно произведению скорости света на разность моментов приема сигнала потребителя и момента его синхронного излучения от спутников»:

Здесь: - местоположение -го спутника, - момент времени приема сигнала от -го спутника по часам потребителя, - неизвестный момент времени синхронного излучения сигнала всеми спутниками по часам потребителя, - скорость света, - неизвестное трехмерное положение потребителя.

История

Идея создания спутниковой навигации родилась ещё в 50-е годы. В тот момент, когда СССР был запущен первый искусственный спутник Земли , американские учёные во главе с Ричардом Кершнером наблюдали сигнал, исходящий от советского спутника и обнаружили, что благодаря эффекту Доплера частота принимаемого сигнала увеличивается при приближении спутника и уменьшается при его отдалении. Суть открытия заключалась в том, что если точно знать свои координаты на Земле, то становится возможным измерить положение и скорость спутника, и наоборот, точно зная положение спутника, можно определить собственную скорость и координаты.

Реализована эта идея была через 20 лет. В 1973 году была инициирована программа DNSS, позже переименованная в Navstar-GPS, а, затем, в GPS. Первый тестовый спутник выведен на орбиту 14 июля 1974 г., а последний из всех 24 спутников, необходимых для полного покрытия земной поверхности, был выведен на орбиту в 1993 г., таким образом, GPS встала на вооружение. Стало возможным использовать GPS для точного наведения ракет на неподвижные, а затем и на подвижные объекты в воздухе и на земле.

Первоначально GPS - глобальная система позиционирования, разрабатывалась как чисто военный проект. Но после того, как в 1983 году вторгшийся в воздушное пространство Советского Союза самолёт Корейских Авиалиний с 269 пассажирами на борту был сбит из-за дезориентации экипажа в пространстве, президент США Рональд Рейган с целью не допустить в будущем подобные трагедии разрешил частичное использование системы навигации для гражданских целей. Во избежание применения системы для военных нужд точность была уменьшена специальным алгоритмом. [уточнить ]

Затем появилась информация о том, что некоторые компании расшифровали алгоритм уменьшения точности на частоте L1 и с успехом компенсируют эту составляющую ошибки. В 2000 г. это загрубление точности отменил своим указом президент США Билл Клинтон.

Спутники
Блок Период
запусков
Запуски спутников Работают
сейчас
Запу-
щено
Не
успешно
Гото-
вится
Заплани-
ровано
I 1978-1985 10 1 0 0 0
II 1989-1990 9 0 0 0 0
IIA 1990-1997 19 0 0 0 11
IIR 1997-2004 12 1 0 0 12
IIR-M 2005-2009 8 0 0 0 7
IIF 2010-2011 2 0 10 0 2
IIIA 2014-? 0 0 0 12 0
Всего 59 2 10 12 31
(Последнее обновление данных: 9 Окт 2011)

Техническая реализация

Космические спутники

Незапущенный спутник, экспонирующийся в музее. Вид со стороны антенн.

Орбиты спутников

Орбиты спутников системы GPS. Пример видимости спутников из одной из точек на поверхности Земли. Visible sat- число спутников, видимых над горизонтом наблюдателя в идеальных условиях (чистое поле).

Спутниковая группировка системы NAVSTAR обращается вокруг Земли по круговым орбитам с одной высотой и периодом обращения для всех спутников. Круговая орбита с высотой порядка 20200 км является орбитой суточной кратности с периодом обращения 11 часов 58 минут; таким образом, спутник совершает два витка вокруг Земли за одни звёздные сутки (23 часа 56 минут). Наклонение орбиты (55°) является также общим для всех спутников системы. Единственным отличием орбит спутников является долгота восходящего узла, или точка, в которой плоскость орбиты спутника пересекает экватор: данные точки отстоят друг от друга приблизительно на 60 градусов. Таким образом, несмотря на одинаковые (кроме долготы восходящего узла) параметры орбит, спутники обращаются вокруг Земли в шести различных плоскостях, по 4 аппарата в каждой.

Радиочастотные характеристики

Спутники излучают открытые для использования сигналы в диапазонах: L1=1575,42 МГц и L2=1227,60 МГц (начиная с Блока IIR-M), а модели IIF будут излучать также на L5=1176,45 МГц. Навигационная информация может быть принята антенной (обычно в условиях прямой видимости спутников) и обработана при помощи GPS-приёмника .

Сигнал с кодом стандартной точности (C/A код - модуляция BPSK (1)), передаваемый в диапазоне L1 (и сигнал L2C (модуляция BPSK) в диапазоне L2 начиная с аппаратов IIR-M), распространяется без ограничений на использование. Первоначально используемое на L1 искусственное загрубление сигнала (режим селективного доступа - SA) с мая 2000 года отключён. С 2007 года США окончательно отказались от методики искусственного загрубления. Планируется с запуском аппаратов Блок III введение нового сигнала L1C (модуляция BOC(1,1)) в диапазоне L1. Он будет иметь обратную совместимость, улучшенную возможность прослеживания пути и в большей степени совместим с сигналами Galileo L1.

Для военных пользователей дополнительно доступны сигналы в диапазонах L1/L2, модулированные помехоустойчивым криптоустойчивым P(Y) кодом (модуляция BPSK(10)). Начиная с аппаратов IIR-M введён в эксплуатацию новый М-код (используется модуляция BOC(15,10)). Использование М-кода позволяет обеспечить функционирование системы в рамках концепции Navwar (навигационная война). М-код передается на существующих частотах L1 и L2. Данный сигнал обладает повышенной помехоустойчивостью, и его достаточно для определения точных координат (в случае с P-кодом было необходимо получение и кода C/A). Еще одной особенностью M-кода станет возможность его передачи для конкретной области диаметром в несколько сотен километров, где мощность сигнала будет выше на 20 децибел. Обычный сигнал М уже доступен в спутниках IIR-M, а узконаправленный будет доступен только при помощи спутников GPS-III.

C запуском спутника блока IIF введена новая частота L5 (1176.45 МГц). Этот сигнал также называют safety of life (охрана жизни человека). Сигнал на частоте L5 мощнее на 3 децибела, чем гражданский сигнал, и имеет полосу пропускания в 10 раз шире. Сигнал смогут использовать в критических ситуациях, связанных с угрозой для жизни человека. Полноценно сигнал будет использоваться после 2014 года.

Сигналы модулируются псевдослучайными последовательностями (PRN) двух типов: C/A-код и P-код. C/A (Clear access) - общедоступный код - представляет собой PRN с периодом повторения 1023 цикла и частотой следования импульсов 1023 МГц. Именно с этим кодом работают все гражданские GPS-приемники. P (Protected/precise)-код используется в закрытых для общего пользования системах, период его повторения составляет 2*1014 циклов. Сигналы, модулированные P-кодом, передаются на двух частотах: L1 = 1575,42 МГц и L2 = 1227,6 МГц. C/A-код передается лишь на частоте L1. Несущая, помимо PRN-кодов модулируется также навигационным сообщением.

Тип спутника GPS-II GPS-IIA GPS-IIR GPS-IIRM GPS-IIF
Масса, кг 885 1500 2000 2000 2170
Срок жизни 7.5 7.5 10 10 15
Бортовое время Cs Cs Rb Rb Rb+Cs
Межспутниковая
связь
- + + + +
Автономная
работа, дней
14 180 180 180 >60
Антирадиационная
защита
- - + + +
Антенна - - Улучшенная Улучшенная Улучшенная
Возможность настройки
на орбите и мощность
бортового передатчика
+ + ++ +++ ++++
Навигационный
сигнал
L1:C/A+P
L2:P
L1:C/A+P
L2:P
L1:C/A+P
L2:P
L1:C/A+P+M
L2:C/A+P+M
L1:C/A+P+M
L2:C/A+P+M
L5:C

24 спутника обеспечивают 100 % работоспособность системы в любой точке земного шара, но не всегда могут обеспечить уверенный приём и хороший расчёт позиции. Поэтому, для увеличения точности позиционирования и резерва на случай сбоев, общее число спутников на орбите поддерживается в большем количестве (31 аппарат в марте 2010 года).

Наземные станции контроля космического сегмента

Основная статья: наземный сегмент спутниковой системы навигации

Слежение за орбитальной группировкой осуществляется с главной контрольной станции, расположенной на авиабазе ВВС США Schriever, штат Колорадо , США и с помощью 10 станций слежения, из них три станции способны посылать на спутники корректировочные данные в виде радиосигналов с частотой 2000-4000 МГц. Спутники последнего поколения распределяют полученные данные среди других спутников.

Применение GPS

Приёмник сигнала GPS

Несмотря на то, что изначально проект GPS был направлен на военные цели, сегодня GPS широко используются в гражданских целях. GPS-приёмники продают во многих магазинах, торгующих электроникой, их встраивают в мобильные телефоны , смартфоны , КПК и онбордеры . Потребителям также предлагаются различные устройства и программные продукты, позволяющие видеть своё местонахождение на электронной карте; имеющие возможность прокладывать маршруты с учётом дорожных знаков, разрешённых поворотов и даже пробок; искать на карте конкретные дома и улицы, достопримечательности, кафе, больницы, автозаправки и прочие объекты инфраструктуры.

Высказывались предложения об интеграции систем Iridium и GPS.

Точность

Составляющие, которые влияют на погрешность одного спутника при измерении псевдодальности, приведены ниже :

Источник погрешности Среднеквадратичное значение погрешности, м
Нестабильность работы генератора 6,5
Задержка в бортовой аппаратуре 1,0
Неопределённость пространственного положения спутника 2,0
Другие погрешности космического сегмента 1,0
Неточность эфемерид 8,2
Другие погрешности наземного сегмента 1,8
Ионосферная задержка 4,5
Тропосферная задержка 3,9
Шумовая ошибка приёмника 2,9
Многолучёвость 2,4
Другие ошибки сегмента пользователя 1,0
Суммарная погрешность 13,1

Суммарная погрешность при этом не равна сумме составляющих.

Типичная точность современных GPS-приёмников в горизонтальной плоскости составляет примерно 6-8 метров при хорошей видимости спутников и использовании алгоритмов коррекции . На территории США, Канады, Японии, КНР, Европейского Союза и Индии имеются станции WAAS , EGNOS , MSAS и т. д. передающие поправки для дифференциального режима, что позволяет снизить погрешность до 1-2 метров на территории этих стран. При использовании более сложных дифференциальных режимов, точность определения координат можно довести до 10 см. Точность любой СНС сильно зависит от открытости пространства, от высоты используемых спутников над горизонтом.

В ближайшее время все аппараты нынешнего стандарта GPS будут заменены на более новую версию GPS IIF, которая имеет ряд преимуществ, в том числе они более устойчивы к помехам.

Но главное, что GPS IIF обеспечивает гораздо более высокую точность определения координат. Если нынешние спутники обеспечивают погрешность 6 метров, то новые спутники будут способны определять местоположение, как ожидается, с точностью не менее 60-90 см. Если такая точность будет не только для военных, но и для гражданских применений, то это приятная новость для владельцев GPS-навигаторов.

На октябрь 2011 года на орбиту выведены первые два спутника из новой версии: GPS IIF SV-1 запущен в 2010 году и GPS IIF-2 запущен 16 июля 2011 года.

Всего первоначальный контракт предусматривал запуск 33 спутников GPS нового поколения, но потом из-за технических проблем начало запуска перенесли с 2006 года на 2010 год, а количество спутников уменьшили с 33 до 12. Все они будут выведены на орбиту в ближайшее время.

Повышенная точность спутников GPS нового поколения стала возможной благодаря использованию более точных атомных часов . Поскольку спутники перемещаются со скоростью около 14000 км/ч (3.874км/с) (первая космическая скорость на высоте 20 200 км), повышение точности времени даже в шестом знаке является критически важным для триангуляции.

Недостатки

Общим недостатком использования любой радионавигационной системы является то, что при определённых условиях сигнал может не доходить до приёмника , или приходить со значительными искажениями или задержками. Например, практически невозможно определить своё точное местонахождение в глубине квартиры внутри железобетонного здания, в подвале или в тоннеле даже профессиональными геодезическими приемниками. Так как рабочая частота GPS лежит в дециметровом диапазоне радиоволн, уровень приёма сигнала от спутников может серьёзно ухудшиться под плотной листвой деревьев или из-за очень большой облачности. Нормальному приёму сигналов GPS могут повредить помехи от многих наземных радиоисточников, а также (в редких случаях) от магнитных бурь , либо преднамеренно создаваемые «глушилками» (данный способ борьбы со спутниковыми автосигнализациями часто используется автоугонщиками).

Невысокое наклонение орбит GPS (примерно 55) серьёзно ухудшает точность в приполярных районах Земли, так как спутники GPS невысоко поднимаются над горизонтом .

Существенной особенностью GPS считается полная зависимость условий получения сигнала от министерства обороны США.

Теперь [когда? ] Министерство обороны США решило начать полное обновление системы GPS. Оно было запланировано достаточно давно, но начать реализовывать этот проект удалось только сейчас. В ходе обновления старые спутники заменят на новые, которые разработаны и произведены компаниями Lockheed Martin и Boeing. Утверждается, что они смогут обеспечивать точность позиционирования с погрешностью 0,5 метра.

Реализация данной программы займёт некоторое [какое? ] время. В Министерстве обороны США утверждают, что полностью завершить обновление системы удастся только через 10 лет. Количество спутников изменено не будет, их по-прежнему будет 30: 24 работающих и 6 резервных.

Хронология

1973 Решение о разработке спутниковой навигационной системы
1974-1979 Испытание системы
1977 Приём сигнала от наземной станции, симулирующей спутник системы
1978-1985 Запуск одиннадцати спутников первой группы (Block I)
1979 Сокращение финансирования программы. Решение о запуске 18 спутников вместо запланированных 24.
1980 В связи с решением свернуть программу использования спутников Vela системы отслеживания ядерных взрывов, эти функции было решено возложить на спутники GPS. Старт первых спутников, оснащённых сенсорами регистрации ядерных взрывов.
1980-1982 Дальнейшее сокращение финансирования программы
1983 После гибели самолёта компании Korean Airline , сбитого над территорией СССР, принято решение о предоставлении сигнала гражданским службам.
1986 Гибель космического челнока Space Shuttle «Challenger» приостановила развитие программы, так как последний планировался для вывода на орбиту второй группы спутников. В результате основным транспортным средством была выбрана ракета-носитель «Дельта»
1988 Решение о развёртывании орбитальной группировки в 24 спутника. 18 спутников не в состоянии обеспечить бесперебойного функционирования системы.
1989 Активация спутников второй группы
1990-1991 Временное отключение SA (англ. selective availability - искусственно создаваемой для неавторизированных пользователей округления определения местоположения до 100 метров) в связи с войной в Персидском заливе и нехваткой военных моделей приёмников. Включение SA 01 Июня 1991 года.
08.12.1993 Сообщение о первичной готовности системы (англ. Initial Operational Capability ). В этом же году принято окончательное решение о предоставлении сигнала для бесплатного пользования гражданским службам и частным лицам
1994 Спутниковая группировка укомплектована
17.07.1995 Полная готовность системы (англ. Full Operational Capability )
01.05.2000 Отключение SA для гражданских пользователей, таким образом точность определения выросла со 100 до 20 метров
26.06.2004 Подписание совместного заявления по обеспечению взаимодополняемости и совместимости Galileo и GPS 1
Декабрь 2006 Российско-американские переговоры по сотрудничеству в области обеспечения взаимодополняемости космических навигационных систем ГЛОНАСС и GPS.²

См. также

  • Transit (первая спутниковая навигационная система, 1960-е - 1996)
  • Galileo (европейская навигационная система)
  • ГЛОНАСС (российская навигационная система)

Примечания

Литература

  • Александров И. Космическая радионавигационная система НАВСТАР (рус.) // Зарубежное военное обозрение . - М ., 1995. - № 5. - С. 52-63. - ISSN 0134-921X .
  • Козловский Е. Искусство позиционирования // Вокруг света . - М ., 2006. - № 12 (2795). - С. 204-280.
  • Шебшаевич В. С., Дмитриев П. П., Иванцев Н. В. и др. Сетевые спутниковые радионавигационные системы / под ред. В. С. Шебшаевича. - 2-е изд., перераб. и доп. - М .: Радио и связь, 1993. - 408 с. - ISBN 5-256-00174-4

Ссылки

Официальные документы и спецификации
  • Официальный сайт правительства США и системы GPS со статусом спутниковой группировки (англ.)
Объяснения работы
  • Глобальные Навигационные Спутниковые Системы (GNSS). Как это работает? , gps-club.ru
Совместимость с Gallileo и ГЛОНАСС
  • Галилео и GPS (англ.)
  • Совместное заявление по обеспечению взаимодополняемости и совместимости ГЛОНАСС и GPS ((недоступная ссылка) , копия)
Разное

Как нередко бывает с высокотехнологичными проектами, инициаторами разработки и реализации системы GPS (Global Positioning System - система глобального позиционирования) стали военные. Проект спутниковой сети для определения координат в режиме реального времени в любой точке земного шара был назван Navstar (Navigation system with timing and ranging - навигационная система определения времени и дальности), тогда как аббревиатура GPS появилась позднее, когда система стала использоваться не только в оборонных, но и в гражданских целях.

Первые шаги по развертыванию навигационной сети были предприняты в середине семидесятых, коммерческая же эксплуатация системы в сегодняшнем виде началась с 1995 года. В настоящий момент в работе находятся 28 спутников, равномерно распределенных по орбитам с высотой 20350 км (для полнофункциональной работы достаточно 24 спутников).

Несколько забегая вперед, скажу, что поистине ключевым моментом в истории GPS стало решение президента США об отмене с 1 мая 2000 года режима так называемого селективного доступа (SA - selective availability) - погрешности, искусственно вносимой в спутниковые сигналы для неточной работы гражданских GPS-приемников. С этого момента любительский терминал может определять координаты с точностью в несколько метров (ранее погрешность составляла десятки метров)! На рис.1 представлены ошибки в навигации до и после отключения режима селективного доступа (данные ).Рис1.

Попробуем разобраться в общих чертах, как устроена система глобального позиционирования, а потом коснемся ряда пользовательских аспектов. Рассмотрение же начнем с принципа определения дальности, лежащего в основе работы космической навигационной системы.

Алгоритм измерения расстояния от точки наблюдения до спутника.

Дальнометрия основана на вычислении расстояния по временной задержке распространения радиосигнала от спутника к приемнику. Если знать время распространения радиосигнала, то пройденный им путь легко вычислить, просто умножив время на скорость света.

Каждый спутник системы GPS непрерывно генерирует радиоволны двух частот - L1=1575.42МГц и L2=1227.60МГц. Мощность передатчика составляет 50 и 8 Ватт соответственно. Навигационный сигнал представляет собой фазовоманипулированный псевдослучайный код PRN (Pseudo Random Number code). PRN бывает двух типов: первый, C/A-код (Coarse Acquisition code - грубый код) используется в гражданских приемниках, второй Р-код (Precision code - точный код), используется в военных целях, а также, иногда, для решения задач геодезии и картографии. Частота L1 модулируется как С/А, так и Р-кодом, частота L2 существует только для передачи Р-кода. Кроме описанных, существует еще и Y-код, представляющий собой зашифрованный Р-код (в военное время система шифровки может меняться).

Период повторения кода довольно велик (например, для P-кода он равен 267 дням). Каждый GPS-приемник имеет собственный генератор, работающий на той же частоте и модулирующий сигнал по тому же закону, что и генератор спутника. Таким образом, по времени задержки между одинаковыми участками кода, принятого со спутника и сгенерированного самостоятельно, можно вычислить время распространения сигнала, а, следовательно, и расстояние до спутника.

Одной из основных технических сложностей описанного выше метода является синхронизация часов на спутнике и в приемнике. Даже мизерная по обычным меркам погрешность может привести к огромной ошибке в определении расстояния. Каждый спутник несет на борту высокоточные атомные часы. Понятно, что устанавливать подобную штуку в каждый приемник невозможно. Поэтому для коррекции ошибок в определении координат из-за погрешностей встроенных в приемник часов используется некоторая избыточность в данных, необходимых для однозначной привязки к местности (подробней об этом чуть позже).

Кроме самих навигационных сигналов, спутник непрерывно передает разного рода служебную информацию. Приемник получает, например, эфемериды (точные данные об орбите спутника), прогноз задержки распространения радиосигнала в ионосфере (так как скорость света меняется при прохождении разных слоев атмосферы), а также сведения о работоспособности спутника (так называемых "альманах", содержащий обновляемые каждые 12.5 минут сведения о состоянии и орбитах всех спутников). Эти данные передаются со скоростью 50 бит/с на частотах L1 или L2.

Общие принципы определения координат с помощью GPS.

Основой идеи определения координат GPS-приемника является вычисление расстояния от него до нескольких спутников, расположение которых считается известным (эти данные содержатся в принятом со спутника альманахе). В геодезии метод вычисления положения объекта по измерению его удаленности от точек с заданными координатами называется трилатерацией. Рис2.

Если известно расстояние А до одного спутника, то координаты приемника определить нельзя (он может находится в любой точке сферы радиусом А, описанной вокруг спутника). Пусть известна удаленность В приемника от второго спутника. В этом случае определение координат также не представляется возможным - объект находится где-то на окружности (она показана синим цветом на рис.2), которая является пересечением двух сфер. Расстояние С до третьего спутника сокращает неопределенность в координатах до двух точек (обозначены двумя жирными синими точками на рис.2). Этого уже достаточно для однозначного определения координат - дело в том, что из двух возможных точек расположения приемника лишь одна находится на поверхности Земли (или в непосредственной близи от нее), а вторая, ложная, оказывается либо глубоко внутри Земли, либо очень высоко над ее поверхностью. Таким образом, теоретически для трехмерной навигации достаточно знать расстояния от приемника до трех спутников.

Однако в жизни все не так просто. Приведенные выше рассуждения были сделаны для случая, когда расстояния от точки наблюдения до спутников известны с абсолютной точностью. Разумеется, как бы ни изощрялись инженеры, некоторая погрешность всегда имеет место (хотя бы по указанной в предыдущем разделе неточной синхронизации часов приемника и спутника, зависимости скорости света от состояния атмосферы и т.п.). Поэтому для определения трехмерных координат приемника привлекаются не три, а минимум четыре спутника.

Получив сигнал от четырех (или больше) спутников, приемник ищет точку пересечения соответствующих сфер. Если такой точки нет, процессор приемника начинает методом последовательных приближений корректировать свои часы до тех пор, пока не добьется пересечения всех сфер в одной точке.

Следует отметить, что точность определения координат связана не только с прецизионным расчетом расстояния от приемника до спутников, но и с величиной погрешности задания местоположения самих спутников. Для контроля орбит и координат спутников существуют четыре наземных станции слежения, системы связи и центр управления, подконтрольные Министерству Обороны США. Станции слежения постоянно ведут наблюдения за всеми спутниками системы и передают данные об их орбитах в центр управления, где вычисляются уточнённые элементы траекторий и поправки спутниковых часов. Указанные параметры вносятся в альманах и передаются на спутники, а те, в свою очередь, отсылают эту информацию всем работающим приемникам.

Кроме перечисленных, существует еще масса специальных систем, увеличивающих точность навигации, - например, особые схемы обработки сигнала снижают ошибки от интерференции (взаимодействия прямого спутникового сигнала с отраженным, например, от зданий). Мы не будем углубляться в особенности функционирования этих устройств, чтобы излишне не осложнять текст.

После отмены описанного выше режима селективного доступа гражданские приемники "привязываются к местности" с погрешностью 3-5 метров (высота определяется с точностью около 10 метров). Приведенные цифры соответствуют одновременному приему сигнала с 6-8 спутников (большинство современных аппаратов имеют 12-канальный приемник, позволяющий одновременно обрабатывать информацию от 12 спутников).

Качественно уменьшить ошибку (до нескольких сантиметров) в измерении координат позволяет режим так называемой дифференциальной коррекции (DGPS - Differential GPS). Дифференциальный режим состоит в использовании двух приемников - один неподвижно находится в точке с известными координатами и называется "базовым", а второй, как и раньше, является мобильным. Данные, полученные базовым приемником, используются для коррекции информации, собранной передвижным аппаратом. Коррекция может осуществляться как в режиме реального времени, так и при "оффлайновой" обработке данных, например, на компьютере.

Обычно в качестве базового используется профессиональный приемник, принадлежащий какой-либо компании, специализирующейся на оказании услуг навигации или занимающейся геодезией. Например, в феврале 1998 года недалеко от Санкт-Петербурга компания "НавГеоКом" установила первую в России наземную станцию дифференциального GPS. Мощность передатчика станции - 100 Ватт (частота 298,5 кГц), что позволяет пользоваться DGPS при удалении от станции на расстояния до 300 км по морю и до 150 км по суше. Кроме наземных базовых приемников, для дифференциальной коррекции GPS-данных можно использовать спутниковую систему дифференциального сервиса компании OmniStar. Данные для коррекции передаются с нескольких геостационарных спутников компании.

Следует заметить, что основными заказчиками дифференциальной коррекции являются геодезические и топографические службы - для частного пользователя DGPS не представляет интереса из-за высокой стоимости (пакет услуг OmniStar на территории Европы стоит более 1500 долларов в год) и громоздкости оборудования. Да и вряд ли в повседневной жизни возникают ситуации, когда надо знать свои абсолютные географические координаты с погрешностью 10-30 см.

В заключение части, повествующей о "теоретических" аспектах функционирования GPS, скажу, что Россия и в случае с космической навигацией пошла своим путем и развивает собственную систему ГЛОНАСС (ГЛОбальная НАвигационная Спутниковая Система). Но из-за отсутствия должных инвестиций в настоящее время на орбите находятся лишь семь спутников из двадцати четырех, необходимых для нормального функционирования системы…

Краткие субъективные заметки пользователя GPS.

Так уж получилось, что о возможности определять свое местоположение с помощью носимого приборчика размерами с сотовый телефон я узнал году в девяносто седьмом из какого-то журнала. Однако замечательные перспективы, нарисованные авторами статьи, были безжалостно разбиты заявленной в тексте ценой навигационного аппарата - почти 400 долларов!

Года через полтора (в августе 1998) судьба занесла меня в маленький спортивный магазинчик в американском городе Бостон. Какого же было мое удивление и радость, когда на одной из витрин я случайно заметил несколько разных навигаторов, самый дорогой из которых стоил 250 долларов (простенькие же модели предлагались за $99). Конечно, уйти из магазина без прибора я уже не мог, поэтому принялся пытать продавцов о характеристиках, преимуществах и недостатках каждой модели. Ничего вразумительного от них я не услышал (и отнюдь не из-за того, что плохо знаю английский), так что пришлось разбираться во всем самому. И в результате, как это нередко бывает, была приобретена самая продвинутая и дорогая модель - Garmin GPS II+, а также специальный чехол к ней и шнур для питания от гнезда прикуривателя автомобиля. В магазине имелось еще два аксессуара для теперь уже моего аппарата - устройство для крепления навигатора на велосипедном руле и шнур для соединения с РС. Последний я долго крутил в руках, но, в конце концов, все же решил не покупать из-за немалой цены (немногим более 30 долларов). Как потом оказалось, шнур я не купил совершенно правильно, ибо все взаимодействие прибора с компьютером сводится к "сливке" в ЭВМ пройденного маршрута (а также, думаю, координат в режиме реального времени, но насчет этого есть определенные сомнения), да и то при условии покупки софта от Garmin. Возможность загружать в прибор карты, к сожалению, отсутствует.

Давать подробное описание своего прибора я не буду хотя бы потому, что он уже снят с производства (желающие ознакомиться с подробной технической характеристикой могут сделать это ). Замечу лишь, что вес навигатора - 255 гр., размеры - 59х127х41 мм. Благодаря своему треугольному сечению аппарат исключительно устойчиво располагается на столе или панели приборов автомобиля (для более прочной фиксации в комплект входит липучка Velcro). Питание осуществляется от четырех пальчиковых батареек АА (их хватает лишь на 24 часа непрерывной работы) или внешнего источника. Попробую рассказать об основных возможностях моего прибора, которые, думаю, имеет подавляющее большинство присутствующих на рынке навигаторов.

С первого взгляда GPS II+ можно принять за мобильный телефон, выпущенный пару лет назад. Лишь только присмотревшись, замечаешь необычно толстую антенну, огромный дисплей (56х38 мм!) и малое, по телефонным меркам, количество клавиш.

При включении прибора начинается процесс сбора информации со спутников, а на экране появляется простенькая мультипликация (вращающийся земной шар). После первоначальной инициализации (которая в открытом месте занимает пару минут) на дисплее возникает примитивная карта неба с номерами видимых спутников, а рядом - гистограмма, свидетельствующая об уровне сигнала от каждого спутника. Кроме того, указывается погрешность навигации (в метрах) - чем больше спутников видит прибор, тем, разумеется, точнее будет определение координат.

Интерфейс GPS II+ построен по принципу "перелистываемых" страниц (для этого даже есть специальная кнопка PAGE). Выше была описана "страница спутников", а кроме нее, есть "страница навигации", "карта", "страница возврата", "страница меню" и ряд других. Следует заметить, что описываемый аппарат не русифицирован, однако даже с плохим знанием английского можно понять его работу.

На странице навигации отображаются: абсолютные географические координаты, пройденный путь, мгновенная и средняя скорости движения, высота над уровнем моря, время движения и, в верхней части экрана, электронный компас. Надо сказать, что высота определяется с гораздо большей погрешностью, чем две горизонтальные координаты (на этот счет есть даже специальная ремарка в руководстве пользователя), что не позволяет использовать GPS, например, для определения высоты парапланеристами. Зато мгновенная скорость вычисляется исключительно точно (особенно для быстродвижущихся объектов), что дает возможность использовать прибор для определения скорости снегоходов (спидометры которых имеют обыкновение значительно врать). Могу дать "вредный совет" - взяв напрокат автомобиль, отключите его спидометр (чтобы он насчитал поменьше километров - ведь оплата зачастую пропорциональна пробегу), а скорость и пройденное расстояние определяйте по GPS (благо он может вести измерения как в милях, так и в километрах).

Средняя скорость движения определяется по несколько странному алгоритму - время простоя (когда мгновенная скорость равна нулю) в вычислениях не учитывается (более логично, на мой взгляд, было бы просто делить пройденное расстояние на общее время поездки, но создатели GPS II+ руководствовались каким-то иными соображениями).

Пройденный путь отображается на "карте" (памяти аппарата хватает километров на 800 - при большем пробеге автоматически стираются самые старые метки), так что при желании можно посмотреть схему своих блужданий. Масштаб карты меняется от десятков метров до сотен километров, что, несомненно, исключительно удобно. Самое же замечательное состоит в том, что в памяти прибора имеются координаты основных населенных пункты всего мира! США, конечно, представлено более подробно (например, все районы Бостона присутствуют на карте с названиями), чем Россия (тут указано расположение лишь таких городов как Москва, Тверь, Подольск и т.п.). Представьте, например, что Вы направляетесь из Москвы в Брест. Находите в памяти навигатора "Брест", жмете специальную кнопку "GO TO", и на экране появляется локальное направление Вашего движения; глобальное направление на Брест; количество километров (по прямой, разумеется), оставшееся до точки назначения; средняя скорость и расчетное время прибытия. И так в любой точке мира - хоть в Чехии, хоть в Австралии, хоть в Таиланде…

Не менее полезной является так называемая функция возврата. Память аппарата позволяет записывать до 500 ключевых точек (waypoints). Каждую точку пользователь может называть по своему усмотрению (например, DOM, DACHA и т.п.), также предусмотрены различные пиктрограммки для отображения информации на дисплее. Включив функцию возврата к точке (любой из заранее записанных), владелец навигатора получает те же возможности, что и в описанном выше случае с Брестом (т.е. расстояние до точки, расчетное время прибытия и все остальное). У меня, например, был такой случай. Приехав в Прагу на автомобиле и устроившись в гостинице, мы с приятелем отправились в центр города. Оставив машину на стоянке, пошли побродить. После бесцельной трехчасовой прогулки и ужина в ресторане мы поняли, что совершенно не помним, где оставили машину. На улице ночь, мы - на одной из маленьких улочек незнакомого города… К счастью, прежде чем покинуть автомобиль, я записал его местоположение в навигатор. Теперь же, нажав пару кнопок на аппарате, я узнал, что машина стоит в 500 метрах от нас и через 15 минут мы уже слушали тихую музыку, направляясь на автомобиле в гостиницу.

Кроме движения к записанной метке по прямой, что не всегда удобно в условиях города, Garmin предлагает функцию TrackBack - возврат по своему пути. Грубо говоря, кривая движения аппроксимируется рядом прямолинейных участков, а в точках излома ставятся метки. На каждом прямолинейном участке навигатор ведет пользователя к ближайшей метке, по достижении же ее осуществляется автоматическое переключение на следующую метку. Исключительно удобная функция при езде на автомобиле по незнакомой местности (сигнал со спутников сквозь здания, конечно, не проходит, поэтому, чтобы получить данные о своих координатах в условиях плотной застройки, приходится искать более-менее открытое место).

Я не буду дальше углубляться в описание возможностей прибора - поверьте, что кроме описанных, в нем есть еще масса приятных и нужных примочек. Одна смена ориентации дисплея чего стоит - можно использовать аппарат как в горизонтальном (автомобильном), так и в вертикальном (пешеходном) положении (см. рис.3).

Одной из основных же прелестей GPS для пользователя я считаю отсутствие какой-либо платы за пользование системой. Купил один раз прибор - и наслаждайся!

Заключение.

Я думаю, нет нужды перечислять области применения рассмотренной системы глобального позиционирования. GPS-приемники встраивают в автомобили, сотовые телефоны и даже наручные часы! Недавно я встретил сообщение о разработке чипа, совмещающего в себе миниатюрный GPS-приемник и модуль GSM - устройствами на его базе предлагается оснащать собачьи ошейники, чтобы хозяин мог без труда обнаружить потерявшегося пса посредством сотовой сети.

Но в любой бочке меда есть ложка дегтя. В данном случае в роли последнего выступают российские законы. Я не буду подробно рассуждать о юридических аспектах использования GPS-навигаторов в России (кое-что об этом можно найти ), замечу лишь, что теоретически высокоточные навигационные приборы (коими, без сомнения являются даже любительские GPS-приемники) у нас запрещены, а их владельцев ждет конфискация аппарата и немалый штраф.

К счастью для пользователей, в России строгость законов компенсируется необязательностью их выполнения - например, по Москве разъезжает огромное количество лимузинов с шайбой-антенной GPS-приемников на крышке багажника. Все более-менее серьезные морские суда оборудованы GPS (и уже выросло целое поколение яхтсменов, с трудом ориентирующихся в пространстве по компасу и прочим традиционным средствам навигации). Надеюсь, власти не будут вставлять палки в колеса техническому прогрессу и в ближайшее время легализуют пользование GPS-приемниками в нашей стране (отменили же разрешения на сотовые телефоны), а также дадут добро на рассекречивание и тиражирование подробных карт местности, необходимых для полноценного использования автомобильных навигационных систем.

Data-lazy-type="image" data-src="http://androidkak.ru/wp-content/uploads/2017/07/13777611-e1500752464590.jpg" alt="GPS навигация" width="300" height="169"> Как пользоваться GPS на Андроиде, интересует всех пользователей современных гаджетов. В большинстве смартфонов навигационная система встроена по умолчанию, и работает она достаточно точно. Чтобы иметь возможность использовать GPS, нужно просто включить в настройках мобильного телефона данную функцию и запустить приложение “Карты”. Программе достаточно нескольких секунд для определения точного местоположения.

Иногда случается, что навигатор не работает. В этом случае определить маршрут и местонахождение становится весьма проблематично. Важно знать, как правильно настроить Андроид, чтобы в любой момент можно было воспользоваться навигационной системой.

Этапы настройки GPS на телефоне

Для начала необходимо скачать специальные программы навигации, которые используют GPS-возможности и совместимы с вашей версией ОС Android. В любом телефоне, работающем на базе данной операционной системы, предустановлены GPS-навигаторы по умолчанию. Речь идет о Google Maps и Яндекс.Картах. К сожалению, иногда эти приложения подводят пользователей. Причина заключается в том, что заданы неверные опции. В случае если полученные данные не совсем верны или совершенно не совпадают с вашим местоположением, нужно изменить настройки системы. Делается это следующим образом:

  1. Введите вручную правильные настройки виртуального COM-порта, который соединяет ваш мобильный телефон со встроенным GPS-приемником.
  2. Очистите и обновите кэш-данные A-GPS при помощи любого доступного ПО. Для этой цели рекомендуется использовать GPS Status. Эта программа великолепно справляется с поставленной задачей при условии активного интернет-соединения.
  3. Выйдите на открытую местность и покрутите мобильное устройство в разных направлениях. Желательно сделать по 3-4 оборота, чтобы убедиться в том, что система работает, как следует.
  4. Чтобы увеличить производительность смартфона, попробуйте включить в настройках функцию “Беспроводные сети”. Она расположена в том же разделе, что и функция “Спутники GPS”.