Домой / Осваиваем ПК / Мультиплексоры и демультиплексоры: схемы, принцип работы. Применение и принцип работы мультиплексора и демультиплексора Мультиплексор простыми словами

Мультиплексоры и демультиплексоры: схемы, принцип работы. Применение и принцип работы мультиплексора и демультиплексора Мультиплексор простыми словами

Мультиплексоры и демультиплексоры (mux и demux в англоязычном сокращении) представляют собой довольно распространенные компоненты в цифровой электронике. Понимание происходящих в них логических процессов позволят лучше понимать схемы с их участием и разрабатывать более сложные электронные устройства



Мультиплексоры и демультиплексоры работают противоположно друг другу, но в соответствии с одним и тем же принципом. Они состоят из информационных входов, информационных выходов и коммутатора (селектора).


На изображении ниже схематично представлены мультиплексор и демультиплексор.



Мультиплексор имеет несколько информационных входов. Коммутатор мультиплексора выбирает, какой из этих входов нужно использовать и подключает его к информационному выходу, который у мультиплексора только один. Эту ситуацию можно сравнить с тем, если бы вам куча людей хотела бы сказать что-то свое, но за один раз вы можете выслушать только одного.


Демультиплексор, наоборот, имеет только один информационный вход, и коммутатор подключает его к какому-то одному информационному выходу в каждый момент времени. То есть, это так же, как если бы вы хотели сказать что-то толпе людей, но за каждый момент времени вы можете сказать это только одному человеку из этой толпы.


Существуют также микросхемы, которые объединяют в себе функции мультиплексоров и демультиплексоров. В англоязычном варианте они обычно обозначаются mux/demux. Также они могут называться двунаправленными мультиплексорами или же просто коммутаторами. Они позволяют сигналу передаваться в обоих направлениях. Так что не только вы можете поговорить с кем-то, но и кто-то из толпы может поговорить с вами в определенный момент времени.


К внутреннему коммутатору в данном случае обычно подходят несколько информационных входов, которые адресуются в двоичной форме. Практически во всех таких микросхемах есть линия OE (output enable или выход активен). Также внутри микросхемы имеется демультиплексор с одним входом и, обычно, с четырьмя выходами. Для выбора выхода у микросхемы имеются также две линии для адресации выхода (00, 01, 10, 11).


Существуют как цифровые, так и аналоговые мультиплексоры. Цифровые представляют собой логические коммутаторы, у которых на выходе будет то же напряжение, что и напряжение питания. Аналоговые же подключают к выходу напряжение выбранного входа.


Принцип мультиплексирования и демультиплексирования использовали на заре развития телефонии в начале прошлого века. Тогда человек, который хотел позвонить своему товарищу, брал телефонную трубку и ждал ответа оператора. Это мультиплексорная часть, поскольку в определенный момент времени оператор из множества выбирает линию, на которой «сидит» этот человек. Человек сообщает, что хочет поговорить с товарищем, номер которого 12345. Это уже коммутаторная часть, здесь оператор получает номер (адрес). Далее он подключает разъем, к каналу товарища. Это демультиплексорная часть. Здесь одна линия из множества каналов соединяется только с одним.


Мультиплексоры и демультиплексоры помогут вам решить задачу с расширением количества входных или выходных линий, если число GPIO вашего микроконтроллера слишком мало. Если у вас в проекте предусмотрено много датчиков, то вы можете подключить их к мультиплексору. Выход мультиплексора затем нужно подключить к АЦП и переключая адреса линий последовательно считывать данные с датчиков.


Также мультиплексоры полезны, когда у вас есть несколько микросхем с интерфейсом I2C, которые имеют одинаковый адрес. Просто подключите линии SDA/SCL к коммутатору и управляйте ими последовательно. Мультиплексоры и демультиплексоры можно задействовать еще и в качестве преобразователей уровней.

Мультиплексор является устройством, которое осуществляет выборку одного из нескольких входов и подключает его к своему выходу. Мультиплексор имеет несколько информационных входов (D 0 , D 1 , ...), адресные входы (А 0 А 1 , ...), вход для подачи стробирующего сигнала С и один выход Q. На рис. 1,ф показано символическое изображение мультиплексора с четырьмя информационными входами.

Каждому информационному входу мультиплексора присваивается номер, называемый адресом. При подаче стробирующего сигнала на вход С мультиплексор выбирает один из входов, адрес которого задается двоичным кодом на адресных входах, и подключает его к выходу.

Таким образом, подавая на адресные входы адреса различных информационных входов, можно передавать цифровые сигналы с этих входов на выход Q. Очевидно, число информационных входов n инф и число адресных входов n адр связаны соотношением n инф = 2 nадр.

Таблица 1

Адресные входы

Стробирующий сигнал

Выход

Функционирование мультиплексора определяется табл. 1. При отсутствии стробирующего сигнала (C = 0) связь между информационными входами и выходом отсутствует (Q = 0). При подаче стробирующего сигнала (C = l) на выход передается логический уровень того из информационных входов D i , номер которого i в двоичной форме задан на адресных входах. Так, при задании адреса A l A 0 = ll 2 = 3 10 на выход Q будет передаваться сигнал информационного входа с адресом 3 10 , т. е. D 3 .

По этой таблице можно записать следующее логическое выражение для выхода Q:

Построенная по этому выражению принципиальная схема мультиплексора показана на рис. 1,б.

В тех случаях, когда требуется передавать на выходы многоразрядные входные данные в параллельной форме, используется параллельное включение мультиплексоров по числу разрядов передаваемых данных.

Использование мультиплексоров для синтеза комбинационных устройств.

Мультиплексоры могут быть использованы для синтеза логических функций. При этом число используемых в схеме элементов (корпусов интегральных микросхем) может быть значительно уменьшено.

Логическое выражение мультиплексора содержит члены со всеми комбинациями адресных переменных. Следовательно, если требуется синтезировать функцию трех переменных f(x 1 , x 2 , х 3), то две из этих переменных (например, x 1 , х 2) могут быть поданы на адресные входы А 1 , и А 0 , и третья x 3 - на информационный вход.

Например, пусть требуется синтезировать функцию, заданную табл. 2. Логическое выражение функции

Рассматривая переменные x l , х 2 в качестве адресных переменных получим табл. 3, из которой видно, что мультиплексор на выходе Q реализует заданную логическую функцию. Принципиальная схема показана на рис. 2.

Очевидно, на четырехвходовых мультиплексорах может быть синтезирована любая функция трех переменных, на восьмивходовых мультиплексорах - любая функция четырех переменных и т. д.

При синтезе комбинационных схем мультиплексоры могут быть использованы совместно с элементами некоторого базиса. Пусть общее число переменных функций n. Тогда, если мультиплексор имеет n адр адресных входов, то на них подаются n адр переменных, а на его информационные входы подаются функции n-n адр переменных.

Пусть, например, требуется синтезировать логическую функцию четырех переменных с использованием четырехвходового мультиплексора. Если адресными переменными являются x 1 , х 2 , то на информационные входы мультиплексора должны подаваться функции переменных х 3 и x 4 , определяемые показанными в табл. 5 областями таблицы Вейча. Внутри каждой очерченной для информационных входов области таблицы Вейча проводится минимизация обычными методами, после чего строятся схемы, формирующие подаваемые на информационные входы мультиплексора функции.

Покажем этот прием на реализации функции, заданной табл. 6.

При подаче переменных x 1 и х 2 на адресные входы мультиплексора на его информационные входы должны подаваться D 0 = 1; D 1 = 0; D 2 = x 3 . 4 , D 3 = 4 . Реализующая заданную функцию схема показана на рис. 3.

Следует иметь в виду, что синтезируя логическое устройство с использованием мультиплексора, необходимо также построить вариант схемы без использования мультиплексора. Затем сравнением полученных вариантов определить, какой из вариантов оказывается лучшим по числу используемых в схеме корпусов интегральных схем.

В компьютерных схемах используется множество деталей, которые по отдельности кажутся бесполезными (и в большинстве случае они таковими и являются). Но стоит их, придерживаясь законов физики, собрать в логическую систему, как они могут оказаться просто незаменимыми. Хорошим примером являются мультиплексоры и демультиплексоры. Они играют важную роль при создании систем связи. Мультиплексор - это несложно. И вы сами в этом убедитесь прочитав статью.

Мультиплексор - это что?

Под мультиплексором понимают устройство, которое выбирает один из нескольких входов, а потом подключает к своему выходу. Всё зависит от состояния двоичного кода. Мультиплексор используется как переключатель сигналов, который имеет несколько входов и только один выход. Механизм его работы можно описать такой таблицей:

Подобные таблицы можно увидеть при изучении программирования, а конкретнее - при решении задач логического выбора. Сначала про аналоговый мультиплексор. Они соединяют входы и выходы напрямую. Существует оптический мультиплексор, который является более сложными. Они просто копируют получаемые значения.

Что такое демультиплексор?

Под демультиплексором понимают устройство с одним входом и множеством выходов. Что к чему будет подключаться - определяет двоичный код. Для этого он считывается, и выход, который имеет необходимое значение, подключается к входу. Как видите, данные устройства не обязательно должны действовать в паре для полноценной работы, а своё название получили из-за выполняемого функционала.

Схема мультиплексора

Давайте рассмотрим схему мультиплексора. Самая большая часть - это элемент И-ИЛИ. Он может иметь разное количество входов, начиная от двух и теоретически до бесконечности. Но, как правило, больше чем на 8 входов их не делают. Каждый отдельный вход называется инвертором. Те, что расположены слева, называют информационными. Посередине находятся адресные входы. Справа обычно подключается элемент, который определяет, будет ли работать сам мультиплексор. Это может быть дополнено входом с инверсией. Для письменного обозначения количества входов и для показа, что это мультиплексор, используют записи такого типа: «1*2». Под единицей понимают количество выводов, что идут в утройство. Двойка используется для обозначения выхода и обычно равна 1. В зависимости от количества адресных входов определяется, какой будет разряд у мультиплексора, и в данном случае используется формула: 2 n . Вместо n как раз и подставляют необходимое значение. В данном случае 2 2 = 4. Если для двоичного или троичного мультиплексора разница количества входов и выходов составляет соответственно два и три, то говорят, что они полные. При меньшем значении они неполные. Вот такое устройство имеет мультиплексор. Схема дополнительно представлена в виде изображения, чтобы вы имели самое полное представление о его строении.

Схема демультиплексора

Для коммутации каналов в демультиплексорах используются только логические элементы «И». Учитывайте, что КМОП-микросхемы часто строятся с применением ключей на полевых транзисторах. Поэтому к ним не применяется понятие демультиплексора. Можно ли сделать так, чтобы одно устройство могла изменить свои свойства на диаметрально противоположные? Да, если поменять местами информационные выходы и входы, вследствие чего к названию "мультиплексор" можно добавлять префикс «де-». По своему предназначению они похожи на дешифраторы. Несмотря на имеющуюся разницу, оба прибора в отечественных микросхемах обозначаются одними и теми же буквами - ИД. Демультиплексоры выполняют однооперандные (одновходные, унитарные) логические функции, которые имеют значительное количество возможных вариантов реакции на сигнал.

Виды мультиплексоров

В основном различают всего два вида мультиплексоров:

  1. Терминальные. Данный тип мультиплексоров располагают на концах линии связи, по которой осуществляется передача каких-то данных.
  2. Ввода/Вывода. Они применяются в качестве инструментария, который устанавливается в разрыв линии связи, чтобы вывести несколько каналов информации из общего потока. Таким способом обходят необходимость установки терминальных мультиплексоров, которые являются более дорогими механизмами.

Стоимость мультиплексоров

Стоит подметить, что мультиплексоры - удовольствие не из дешевых. Самый дешевый на сегодняшний момент стоит больше 12 тысяч рублей, верхний предел - 270 000. Но даже при таких ценах они всё равно почти всегда выгодней прокладки новой линии. Но такая выгода присутствует, только если есть квалифицированные кадры, которые смогут выполнить весь объем работ надлежащим образом и установят правильно мультиплексор. Цена может немного повыситься, если нет штатного специалиста. Но их всегда можно нанять в специализированных компаниях.

Мультиплексирование

Мультиплексирование сигналов осуществляется из-за значительной стоимости самих каналов связи, а также из-за затрат с их обслуживанием. К тому же с чисто физической точки зрения то, что имеется сейчас, не используется на полную мощность. Установка мультиплексора для работы в системе является более выгодной в денежном отношении, чем организация нового канала. К тому же на этот процесс приходится тратить меньше времени, что тоже предполагает определённые материальные выгоды.

В рамках статьи ознакомимся с принципом действия частотного мультиплексирования. При нём под каждый входящий поток в общем канале связи специально выделяют отдельный диапазон частот. А перед мультиплексором ставят задачу, чтобы он переносил спектр каждого из входящих спектров в другой интервал значений. Это делается для исключения возможности пересечения разных каналов. Чтобы они не превратились в помеху один для другого даже при выходе за отведённые рамки, используют технологию защитных интервалов. Она заключается в том, что оставляют определённую частоту между каждым каналом, которая примет на себя удар неполадок и не скажется на общем состоянии системы. Применено FDMA-мультиплексирование может быть в оптических и электрических линиях связи.

Из ограниченности ресурсов создалась возможность усовершенствования механизма. В конечном результате всё вылилось в процесс под названием «временное мультиплексирование». При данном механизме в общем высокоскоростном потоке отводится небольшой временной промежуток для передачи одного входного сигнала. Но это не единственный вариант реализации. Может быть и такое, что отведена определённая часть времени, которая циклично повторяется через заданный интервал. В общем перед мультиплексором в данных случаях стоит задача обеспечения циклического доступа к среде передачи данных, которая должна быть открыта входящим потокам на протяжении небольших промежутков.

Заключение

Мультиплексор - это то, что расширяет возможности коммуникаций. В рамках статьи были рассмотрены приборы, используемые для передачи данных, которые позволяют значительным образом экономить на данной статье расходов. Также было кратко рассмотрено их схематическое строение и понятие мультиплексирования, его особенности и применение. Таким образом, мы рассмотрели теоретическую базу. Она понадобится для перехода к практике при желании исследовать мультиплексоры и демультиплексоры.

По своей архитектуре цифровой мультиплексор представляет собой устройство, оснащенное несколькими цифровыми позиционными переключателями. Целью их работы является коммутация входных сигналов для обеспечения пропуска их в единую выходную линию.

Цифровой мультиплексор, как правило, имеет три группы входных каналов. Адресные, двоичный код которых служит для определения связи между информационным входом и конечным выходом, информационные и , их еще называют стробирующими.

В современных интегральных цифровой мультиплексор максимально оснащен шестнадцатью информационными входами.
Если при проектировании выясняется, что требуется большее количество информационных входов, то проблема решается за счет создания структуры так называемого мультиплексорного дерева, которое оснащается несколькими интегральными микросхемами.

Цифровой мультиплексор предназначается для синтеза фактически любого необходимого логического устройства, что позволяет сократить общее количество используемых логических элементов.

Для определения потребности выполняются следующие действия: на основании выходной функции, согласно значений переменных, строится карта Карно. Далее определяется порядок работы мультиплексора в схеме. Затем строится маскирующая матрица в обязательном порядке, соответствующая порядку примененного мультиплексора.

После этого получившаяся матрица накладывается на карту Карно. Затем проводится минимизация функции для каждой из областей имеющейся матрицы. В конце, уже на основании полученных результатов минимизации, строится . Таковы правила синтеза на основе использования мультиплексора.

Возможности мультиплексора

Применение мультиплексоров многогранно. Например, гибкие мультиплексоры позволяют формировать непрерывные первичные цифровые потоки со скоростью 2048 кбит/с на основе аналоговых сигналов. Также коммутировать данные цифровых интерфейсов методом кроссовой коммутации электронных каналов со скоростями до 64 кбит/с.

Кроме этого, осуществляют передачу цифрового потока по сети IP/Ethernet также обеспечивают конвертацию линейной сигнализации и физических стыков.

Гибкие мультиплексоры, кроме этого, обеспечивают возможность осуществления широковещательных соединений, то есть подачу сигналов с одного из цифровых либо аналоговых источников сразу на несколько других. По этой причине их часто применяют для передачи радиовещательных программ одновременно в несколько различных точек.

3.7. Мультиплексоры и демультиплексоры

Мультиплексор - это устройство, которое осуществляет выборку одного из нескольких входов и подключает его к своему единственному выходу, в зависимости от состояния двоичного кода. Другими словами, мультиплексор - переключатель сигналов, управляемый двоичным кодом и имеющий несколько входов и один выход. К выходу подключается тот вход, чей номер соответствует управляющему двоичному коду.

Ну и частное определение: мультиплексор - это устройство, преобразующее параллельный код в последовательный.

Структуру мультиплексора можно представить различными схемами, например, вот этой:

Рис. 1 – Пример схемы конкретного мультиплексора

Самый большой элемент здесь это элемент И-ИЛИ на четыре входа. Квадратики с единичками - инверторы.

Разберем выводы. Те, что слева, а именно D0-D3, называются информационными входами. На них подают информацию, которую предстоит выбрать. Входы А0-А1 называются адресными входами. Сюда и подается двоичный код, от которого зависит, какой из входов D0-D3 будет подключен к выходу, на этой схеме обозначенному как Y . Вход С – синхронизация, разрешение работы.

На схеме еще есть входы адреса с инверсией. Это чтобы сделать устройство более универсальным.

На рисунке показан, как еще его называют, 4Х1 мультиплексор. Как мы знаем, что число разных двоичных чисел, которые может задавать код, определяется числом разрядов кода как 2 n , где n – число разрядов. Задавать нужно 4 состояния мультиплексора, а, значит, разрядов в коде адреса должно быть 2 (2 2 = 4).

Для пояснения принципа работы этой схемы посмотрим на её таблицу истинности:

Так двоичный код выбирает нужный вход. Например, имеем четыре объекта, и они подают сигналы, а устройство отображения у нас одно. Берем мультиплексор. В зависимости от двоичного кода к устройству отображения подключается сигнал от нужного объекта.

Микросхемой мультиплексор обозначается так:

Рис. 2 – Мультиплексор как МКС

Демультиплексор - устройство, обратное мультиплексору. Т. е., у демультиплексора один вход и много выходов. Двоичный код определяет, какой выход будет подключен ко входу.

Другими словами, демультиплексор - это устройство, которое осуществляет выборку одного из нескольких своих выходов и подключает его к своему входу или, ещё, это переключатель сигналов, управляемый двоичным кодом и имеющий один вход и несколько выходов.

Ко входу подключается тот выход, чей номер соответствует состоянию двоичного кода. И частное определение: демультиплексор - это устройство, которое преобразует последовательный код в параллельный.

Обычно в качестве демультиплексора используют дешифраторы двоичного кода в позиционный, в которых вводят дополнительный вход стробирования.

Из-за сходства схем мультиплексора и демультиплексора в КМОП сериях есть микросхемы, которые одновременно являются мультиплексором и демультиплексором, смотря с какой стороны подавать сигналы.

Например, К561КП1, работающая как переключатель 8х1 и переключатель 1х8 (то есть, как мультиплексор и демультиплексор с восемью входами или выходами). Кроме того, в КМОП микросхемах помимо переключения цифровых сигналов (логических 0 или 1) существует возможность переключения аналоговых.

Другими словами, это переключатель аналоговых сигналов, управляемый цифровым кодом. Такие микросхемы называются коммутаторами. К примеру, с помощью коммутатора можно переключать сигналы, поступающие на вход усилителя (селектор входов). Рассмотрим схему селектора входов УМЗЧ . Построим её с использованием триггеров и мультиплексора.

Рис. 3 - Селектор входных сигналов

Итак, разберем работу. На триггерах микросхемы DD1 собран кольцевой счетчик нажатий кнопки разрядностью 2 (два триггера - 2 разряда). Двухразрядный двоичный код поступает на адресные входы D0-D1 микросхемы DD2. Микросхема DD2 представляет собой сдвоенный четырехканальный коммутатор.

В соответствии с двоичным кодом к выходам микросхемы А и В подключаются входы А0-А3 и В0-В3 соответственно. Элементы R1, R2, C1 устраняют дребезг контактов кнопки.

Дифференцирующая цепь R3C2 устанавливает триггеры в нулевое состояние при включении питания, при этом к выходу подключается первый вход. При нажатии на кнопку триггер DD1.1 переключается в состояние лог. 1 и к выходу подключается второй вход и т. д. Перебор входов идет по кольцу, начиная с первого.

С одной стороны просто, с другой немного неудобно. Кто его знает, сколько раз нажали на кнопку после включения и какой вход подключен к выходу сейчас. Хорошо бы поставить индикатор подключенного входа.

Вспоминаем семисегментный дешифратор. Переносим дешифратор с индикатором на схему коммутатора и первые два входа дешифратора (на схеме обозначен как DD3), т. е. 1 и 2 (выводы 7 и 1) подключаем к прямым выходам триггеров DD1.1 DD1.2 (выводы 1 и 13). Входы дешифратора 4 и 8 (выводы 2 и 6) соединяем с корпусом (т. е. подаем лог. 0). Индикатор будет показывать состояние кольцевого счетчика, а именно цифры от 0 до 3. Цифра 0 соответствует первому входу, 1 - 2-му и т. д.