Домой / Браузеры / Графический процессор что такое. Графический процессор — выбираем более предпочтительный Что такое графический процессор в компьютере

Графический процессор что такое. Графический процессор — выбираем более предпочтительный Что такое графический процессор в компьютере

Не многие пользователи знают, что видеокарты могут выполнять намного больше, чем просто отображать картинку на мониторе. Используя CUDA, Stream и остальные подобные технологии, можно существенно поднять производительность компьютера, взвалив на себя не свои вычисления. Ниже будет описан принцип работы.

Чтобы вывести на экран непрерывные кадры в какой-нибудь современной игры, компьютеру требуется хорошая производительность. Стоит предположить, что современные видеокарты по производительности соответствуют свежим версиям процессоров.

Стоит отметить, что когда видеоадаптер простаивает и не выполняет обработку изображения, ее возможности остаются невостребованными. Чтобы не было такого простоя и можно было взвалить на нее некоторые обязанности, что снизит нагрузку на процессор, необходимо применять специальные опции ускорения компьютера. Ниже будет подробная инструкция о принципах работы этой технологии, которая может увеличить производительность ПК.

Каким образом видеоплата увеличивает скорость работы компьютера?

Воспользоваться возможностями видеокарт могут только специальные приложения. Данные программы могут совмещаться с видеокартой и используют одну из 4-х технологий физического ускорения.

CUDA. Данную разработку создала корпорация Nvidia. Эта технология может применяться для проведения сложных вычислительных манипуляций и для редактирования видео и картинок.

Stream. Эта технология механического ускорения аналогична первой, но разработана изготовителем видеоадаптеров AMD.
Обе эти технологии поддерживаются всеми операционками, кроме Mac OS, и используют только с видеокартами подходящего изготовителя. Создатели ПО вынуждены проводить дополнительную работу, чтобы видеокарты обоих разработчиков смогли увеличивать скорость работы их приложений. Ниже представлены технологии, которые способны работать с платами обоих изготовителей.

OpenCL. Эта технология была выпущена корпорация Apple в 2008 году и поддерживается всеми операционками и любым ПО. Однако, на сегодняшний день нет приложений для ускорения компьютера с использованием этой технологии. Кроме того, по увеличению продуктивности OpenCL существенно позади от первых двух технологий.

DirectCompute. Эта технология была встроена компанией Microsoft в DirectX 11. Но она способна работать только на операционках Windows 7 и Vista, и то с небольшим пакетом приложений.

Какое увеличение производительности предоставляет видеокарта?

Прирост непосредственно зависит от графического адаптера и производительности остальных элементов компьютера. Увеличение производительности устанавливается утилитами и проводимыми операциями. На современном среднем ПК увеличение скорости преобразования высококачественного видео может достигать до 20-ти раз. А вот редактирование фильтрами и спецэффектами фотоснимком может ускориться в триста раз.

Что влияет на высокую продуктивность CUDA и подобных технологий?

CPU на материнке при выполнении сложных задач изначально разделяет процесс на несколько поменьше, а после выполняет их последовательную обработку. Полученный промежуточный результат размещается в маленькой, но быстрой памяти процессора. Когда отделы памяти переполняются, файлы перемещаются в кэш-память, которая также расположена в процессоре. Но на обмен информацией между процессором и оперативкой требуется довольно много времени, поэтому скорость получается не совсем высокой.

Видеокарты иногда могут проводить такие манипуляции значительно быстрее. На это может влиять несколько обстоятельств. Одно из них параллельные вычисления. При необходимости провести несколько подобных манипуляций, некоторые из них могут проводиться графическим модулем совместно с процессором.

К примеру, при работе с видео или картинками утилите необходимо изменять огромное количество пикселей, и при этом используя повторяющиеся способы. Специально для этого графический адаптер обладает сотнями мелких процессоров, которые носят названия потоковые.

Кроме того, необходим быстрый доступ к памяти. По аналогии с центральными процессами, графические адаптеры также располагают своей промежуточной памятью и оперативкой. Но в этом случае они обладают множеством регистров скоростной памяти, что существенно увеличивает скорость вычислений.

Какое число потоковых CPU обладают видеокарты?

На это влияет модель процессора. К примеру, GeForse GTX 590 располагает двумя модулями Fermi, каждый из которых обладает 512 потоковыми CPU. Одна из мощнейших видеоплат от AMD — Radeon HD 6990 – также оснащена парой модулей, в каждом из которых по 1536 процессоров. Но при всем этом, HD 6990 существенно проигрывает GTX 590 по скорости.

Как запустить CUDA или Stream?

Ничего запускать не следует, так как технологии представляют собой элемент аппаратной части видеокарт. После того, как драйвер графического адаптера установить приложение, которое поддерживает какую-то технологию, тогда автоматически произойдет увеличение скорости работы компьютера. Чтобы получить полную производительность, необходимо инсталлировать свежую версию драйвера.
Стоит отметить, что пользователям видеокарт AMD требуется скачать и инсталлировать набор AMD Media Codec Package.

Почему не все утилиты работают с этими технологиями?

До того момента, пока OpenCL не будет широко распространен, создателям программного обеспечения надо подстраивать каждое приложение для возможности работать с видеоплатами Nvidia и AMD. Но при этом не каждый производитель пойдет на дополнительные расходы.

Кроме того, не все приложения имеют возможность обеспечивать постоянный поток несложных операций вычислений, которые могут происходить параллельно. Это может отлично сработать совместно с программами по редактированию видео и графики. Для почтовиков или текстовых редакторов эти технологии не сильно помогут.

Супер ПК

К примеру, китайский ПК Tianhe-1А располагает 7168 графическими модулями Nvidia, которые поддерживают отличную производительность. При этом проходит 2,5 трлн вычислений в секунду. Этот компьютер расходует 4 мегаватта энергии. Столько электричества расходует городок с пятью тысячами человек населения.

Способен ли графический адаптер заменить центральный?

Такую замену провести невозможно. Устройство этих процессоров полностью разное. CPU представляет собой универсальный вычислительный блок, который имеет возможность обрабатывать и пересылать информацию другим элементам ПК. В свою очередь, видеокарты являются узконаправленными устройствами, несмотря на то, что выполняют маленькое количество операций, но при этом с высокой скоростью.

Что будет в будущем: универсальные чипы

Чтобы увеличить производительность CPU, корпорации Intel и AMD постоянно добавляют ядра в свои процессоры. Кроме того, они постоянно добавляют новые технологии, которые способны увеличить эффективность вычислительных операций и возможность параллельной обработки информации.

По сравнению с центральными процессорами, видеокарты уже располагают большим количеством простых ядер, которые способны очень быстро выполнить комплексные вычисления.

Но получается так, что начальные отличия в принципах работы видеокарты и CPU понемногу стираются. Поэтому разработка универсального чипа очень логична. На сегодняшний день пользователи компьютера могут использовать весь потенциал видеокарты без дорогих графических чипов.

Современные процессоры от ведущих разработчиков, на данный момент могут продемонстрировать возможность соединить графический адаптер и CPU и работать, как один универсальный вычислительный блок.

В любом из чипов ядра CPU и видеокарты размещаются на единственном кристалле. Это предоставляет возможность быстрее разделить вычислительные манипуляции между ядрами. Эти применяемые технологии носят имя Intel Quick Sync и AMD Арр. В данное время уже имеются отдельные приложения, которые применяют подобную технологию.

В общем, это все, что необходимо знать о различиях центрального процессора и видеокарты. Как видно из написанного, графический процессор способен выполнять некоторые операции центрального, особенно это касается современных компьютеров с мощными видеокартами.

Графический процессор (GPU) является не менее важным компонентом SoC мобильного устройства, чем (CPU). За последние пять лет бурное развитие мобильных платформ Android и iOS подстегнуло разработчиков мобильных графических процессоров, и сегодня никого не удивить мобильными играми с трехмерной графикой уровня PlayStation 2 или даже выше. Вторую статью цикла “Ликбез по мобильному железу” я посвятил графическим процессорам.

В настоящее время бОльшую часть графических чипов производят используя ядра: PowerVR (Imagination Technologies), Mali (ARM), Adreno (Qualcomm, ранее ATI Imageon) и GeForce ULP (nVIDIA).

PowerVR – это подразделение компании Imagination Technologies, которая в недавнем прошлом разрабатывала графику для настольных систем, но под давлением ATI и nVIDIA вынуждена была покинуть этот рынок. Сегодня PowerVR разрабатывает, пожалуй, самые мощные GPU для мобильных устройств. Чипы PowerVR используют при производстве процессоров такие компании, как Samsung, Apple, Texas Instruments и др. Например, разные ревизии GPU от PowerVR установлены во всех поколениях Apple iPhone. Актуальными остаются серии чипов 5 и 5XT. К пятой серии относятся одноядерные чипы: SGX520, SGX530, SGX531, SGX535, SGX540 и SGX545. Чипы серии 5XT могут иметь от 1 до 16 ядер: SGX543, SGX544, SGX554. Спецификации 6 серии (Rogue) пока уточняются, но уже известен диапазон производительности чипов серии – 100-1000GFLOPS.

Mali – это графические процессоры, разрабатываемые и лицензируемые британской ARM. Чипы Mali являются составной частью различных SoC, производимых Samsung, ST-Ericsson, Rockchip и др. Например, Mali-400 MP входит в состав SoC Samsung Exynos 421x, используемых в таких смартфонах, как Samsung Galaxy SII и SIII, в двух поколениях “смартфонпланшетмаша?” Samsung Note. Актуальным на сегодня является Mali-400 MP в двух- и четырехядерных вариантах. На подходе чипы Mali-T604 и Mali-T658, производительность которых до 5 раз выше, чем у Mali-400.

Adreno – это графические чипы, которые разрабатывает одноименное подразделение американской Qualcomm. Название Adreno является анаграммой от Radeon. До Qualcomm подразделение принадлежало ATI, а чипы носили название Imageon. Последние несколько лет Qualcomm при производстве SoC использовала чипы 2xx серии: Adreno 200, Adreno 205, Adreno 220, Adreno 225. Последний из списка – совсем свежий чип – выполненный по 28нм технологии, самый мощный из Adreno 2хх серии. Его производительность в 6 раз выше, чем у “старичка” Adreno 200. В 2013 году все больше устройств получат графические процессоры Adreno 305 и Adreno 320. Уже сейчас 320-ый установлен в Nexus 4 и китайскую версию Nokia Lumia 920T, по некоторым параметрам чип в 2 раза мощнее 225-го.

GeForce ULP (ultra-low power) – мобильная версия видео-чипа от nVIDIA, входит в состав системы-на-кристалле Tegra всех поколений. Одним из важнейших конкурентных преимуществ Tegra является специализированный контент, предназначенный только для устройств на основе этой SoC. У nVIDIA традиционно тесная связь с разработчиками игр, и их команда Content Development работает вместе с ними для того, чтобы оптимизировать игры для графических решений GeForce. Для доступа к таким играм nVIDIA даже запустила Android-приложение Tegra Zone, специализированный аналог Android Market, в котором можно скачать оптимизированные для Tegra приложения.

Производительность графических процессоров обычно измеряется по трем параметрам:

– количество треугольников в секунду обычно в миллионах – Мега (MTriangles/s);

– количество пикселей в секунду обычно в миллионах – Мега (MPixel/s);

– количество операций с плавающей точкой в секунду обычно в миллиардах – Гига (GFLOPS).

По “флопсам” требуется небольшое пояснение. FLOPS (FLoating-point Operations Per Second) – это количество вычислительных операций или инструкций, выполняемых над операндами с плавающей точкой (запятой) в секунду. Операнд с плавающей точкой – это нецелое число (корректней было бы сказать “с плавающей запятой”, ведь знаком, отделяющим целую часть числа от дробной в русском языке является именно запятая). Понять какой графический процессор установлен в твоем смартфоне поможет ctrl+F и таблица приведенная ниже. Обратите внимание на то, что GPU разных смартфонов работают на разной частоте. Что бы вычислить производительность в GFLOPS для конкретной модели необходимо число указанное в столбце “производительность в GFLOPS” разделить на 200 и умножить на частоту отдельно взятого GPU (например в Galaxy SIII GPU работает на частоте 533МГц значит 7,2 / 200 * 533 = 19,188):

Название смартфона/планшета Процессор Графический процессор Производительность в GFLOPS
Samsung Galaxy S 4 Samsung Exynos 5410 PowerVR SGX544MP3 21,6 @200МГц
HTC One Qualcomm Snapdragon 600 APQ8064T Adreno 320 20,5 @200МГц
Samsung Galaxy S III, Galaxy Note II, Galaxy Note 10.1 Samsung Exynos 4412 Mali-400 MP4 7,2 @200МГц
Samsung Chromebook XE303C12, Nexus 10 Samsung Exynos 5250 Mali-T604 MP4 36 @200МГц
Samsung Galaxy S II, Galaxy Note, Tab 7.7, Galaxy Tab 7 Plus Samsung Exynos 4210 Mali-400 MP4 7,2 @200МГц
Samsung Galaxy S, Wave, Wave II, Nexus S, Galaxy Tab, Meizu M9 Samsung Exynos 3110 PowerVR SGX540 3,2 @200Мгц
Apple iPhone 3GS, iPod touch 3gen Samsung S5PC100 PowerVR SGX535 1,6 @200Мгц
LG Optimus G, Nexus 4, Sony Xperia Z Qualcomm APQ8064(ядра Krait) Adreno 320 20,5 @200МГц
HTC One XL, Nokia Lumia 920, Lumia 820, Motorola RAZR HD, Razr M, Sony Xperia V Qualcomm MSM8960(ядра Krait) Adreno 225 12,8 @200МГц
HTC One S, Windows Phone 8x, Sony Xperia TX/T Qualcomm MSM8260A Adreno 220 ~8,5* @200МГц
HTC Desire S, Incredible S, Desire HD, SonyEricsson Xperia Arc, Nokia Lumia 800, Lumia 710 Qualcomm MSM8255 Adreno 205 ~4,3* @200МГц
Nokia Lumia 610, LG P500 Qualcomm MSM7227A Adreno 200 ~1,4* @128МГц
Motorola Milestone, Samsung i8910, Nokia N900 TI OMAP3430 PowerVR SGX530 1,6 @200Мгц
Samsung Galaxy Nexus, Huawei Ascend P1, Ascend D1, Amazon Kindle Fire HD 7″ TI OMAP4460 PowerVR SGX540 3,2 @200Мгц
RIM BlackBerry Playbook, LG Optimus 3D P920, Motorola ATRIX 2, Milestone 3, RAZR, Amazon Kindle Fire первого и второго поколений TI OMAP4430 PowerVR SGX540 3,2 @200Мгц
Motorola Defy, Milestone 2, Cliq 2, Defy+, Droid X, Nokia N9, N950, LG Optimus Black, Samsung Galaxy S scLCD TI OMAP3630 PowerVR SGX530 1,6 @200Мгц
Acer Iconia Tab A210/A211/A700/ A701/A510, ASUS Transformer Pad, Google Nexus 7, Eee Pad Transformer Prime, Transformer Pad Infinity, Microsoft Surface, Sony Xperia Tablet S, HTC One X/X+, LG Optimus 4X HD, Lenovo IdeaPad Yoga nVidia Tegra 3 GeForce ULP 4,8 @200МГц
Acer Iconia Tab A500, Iconia Tab A501, Iconia Tab A100, ASUS Eee Pad Slider, Eee Pad Transformer, HTC Sensatoin/XE/XL/4G, Lenovo IdeaPad K1, ThinkPad Tablet, LG Optimus Pad, Optimus 2X, Motorola Atrix 4G, Electrify, Photon 4G, Xoom, Samsung Galaxy Tab 10.1, Galaxy Tab 8.9, Sony Tablet P, Tablet S nVidia Tegra 2 GeForce ULP 3,2 @200МГц
Apple iPhone 5 Apple A6 PowerVR SGX543MP3 19,2 @200МГц
Apple iPad 2, iPhone 4S, iPod touch 5gen, iPad mini Apple A5 PowerVR SGX543MP2 12,8 @200МГц
Apple iPad, iPhone 4, iPod touch 4gen Apple A4 PowerVR SGX535 1,6 @200МГц

* – данные приблизительные.

Приведу еще одну таблицу с абсолютными значениями производительности самых популярных смартфонов верхнего ценового диапозона:

* – неофициальные данные.

Мощность мобильной графики растет от года к году. Уже в этом году в топовых смартфонах мы можем увидеть игры уровня PS3/X-Box360. Одновременно с мощностью сильно растет энергопотребление SoC и неприлично снижается автономность мобильных устройств. Что ж, будем ждать прорыва в области производства источников питания!

Еще один пожиратель энергии в современном мобильном устройстве – это, безусловно, дисплей. Экраны в мобильных телефонах становятся все краше. Дисплеи смартфонов выпущенных с разницей всего лишь в год, разительно отличаются по качеству картинки. В следующей статье цикла я расскажу о дисплеях: каких типов они бывают, что такое PPI, от чего зависит энергопотребление и прочее.

Диспетчер задач Windows 10 содержит подробные инструменты мониторинга графического процессора (GPU ). Вы можете просматривать использование каждого приложения и общесистемного графического процессора, а Microsoft обещает, что показатели диспетчера задач будут более точными, чем показатели сторонних утилит.

Как это работает

Эти функции графического процессора были добавлены в обновлении Fall Creators для Windows 10 , также известном как Windows 10 версия 1709 . Если вы используете Windows 7, 8 или более старую версию Windows 10, вы не увидите эти инструменты в своем диспетчере задач.

Windows использует более новые функции в Windows Display Driver Model, чтобы извлекать информацию непосредственно из графического процессора (VidSCH) и менеджера видеопамяти (VidMm) в графическом ядре WDDM, которые отвечают за фактическое распределение ресурсов. Он показывает очень точные данные независимо от того, какие приложения API используют для доступа к GPU-Microsoft DirectX, OpenGL, Vulkan, OpenCL, NVIDIA CUDA, AMD Mantle или чему-либо еще.

Именно поэтому в диспетчере задач отображаются только системы с совместимыми с WDDM 2.0 графическими процессорами . Если вы этого не видите, графический процессор вашей системы, вероятно, использует более старый тип драйвера.

Вы можете проверить, какая версия WDDM используется вашим драйвером GPU , нажав кнопку Windows+R, набрав в поле «dxdiag », а затем нажмите «Enter », чтобы открыть инструмент «Средство диагностики DirectX ». Перейдите на вкладку «Экран » и посмотрите справа от «Модель » в разделе «Драйверы ». Если вы видите здесь драйвер WDDM 2.x, ваша система совместима. Если вы видите здесь драйвер WDDM 1.x, ваш GPU несовместим.

Как просмотреть производительность графического процессора

Эта информация доступна в диспетчере задач , хотя по умолчанию она скрыта. Чтобы открыть ее, откройте Диспетчер задач , щелкнув правой кнопкой мыши на любом пустом месте на панели задач и выбрав «Диспетчер задач » или нажав Ctrl+Shift+Esc на клавиатуре.

Нажмите кнопку «Подробнее » в нижней части окна «Диспетчер задач », если вы видите стандартный простой вид.

Если GPU не отображается в диспетчере задач , в полноэкранном режиме на вкладке «Процессы » щелкните правой кнопкой мыши любой заголовок столбца, а затем включите опцию «Графический процессор ». Это добавит столбец графического процессора , который позволяет увидеть процент ресурсов графического процессора , используемых каждым приложением.

Вы также можете включить опцию «Ядро графического процессора », чтобы увидеть, какой графический процессор использует приложение.

Общее использование GPU всех приложений в вашей системе отображается в верхней части столбца Графического процессора . Щелкните столбец GPU , чтобы отсортировать список и посмотреть, какие приложения используют ваш GPU больше всего на данный момент.

Число в столбце Графический процессор - это самое высокое использование, которое приложение использует для всех движков. Так, например, если приложение использует 50% 3D-движка GPU и 2% декодирования видео движка GPU, вы просто увидите, что в столбце GPU отображается число 50%.

В столбце «Ядро графического процессора » отображается каждое приложение. Это показывает вам, какой физический GPU и какой движок использует приложение, например, использует ли он 3D-движок или механизм декодирования видео. Вы можете определить, какой графический процессор соответствует определенному показателю, проверив вкладку «Производительность », о которой мы поговорим в следующем разделе.

Как просмотреть использование видеопамяти приложения

Если вам интересно, сколько видеопамяти используется приложением, вам нужно перейти на вкладку «Подробности » в диспетчере задач. На вкладке «Подробности » щелкните правой кнопкой мыши любой заголовок столбца и выберите «Выбрать столбцы ». Прокрутите вниз и включите колонки «Графический процессор », «Ядро графического процессора », « » и « ». Первые два доступны также на вкладке «Процессы », но последние две опции памяти доступны только на панели «Подробности ».

Столбец «Выделенная память графического процессора » показывает, сколько памяти приложение использует на вашем GPU . Если на вашем ПК установлена дискретная видеокарта NVIDIA или AMD, то это часть его VRAM, то есть сколько физической памяти на вашей видеокарте использует приложение. Если у вас встроенный графический процессор , часть вашей обычной системной памяти зарезервирована исключительно для вашего графического оборудования. Это показывает, какая часть зарезервированной памяти используется приложением.

Windows также позволяет приложениям хранить некоторые данные в обычной системной памяти DRAM. Столбец «Общая память графического процессора » показывает, сколько памяти приложение использует в настоящее время для видеоустройств из обычной системной ОЗУ компьютера.

Вы можете щелкнуть любой из столбцов для сортировки по ним и посмотреть, какое приложение использует больше всего ресурсов. Например, чтобы просмотреть приложения, использующие наибольшую видеопамять на вашем графическом процессоре, щелкните столбец «Выделенная память графического процессора ».

Как отследить использование общего ресурса GPU

Чтобы отслеживать общую статистику использования ресурсов GPU , перейдите на вкладку «Производительность » и посмотрите на «Графический процессор » внизу на боковой панели. Если на вашем компьютере несколько графических процессоров, здесь вы увидите несколько вариантов GPU .

Если у вас несколько связанных графических процессоров - используя такую функцию, как NVIDIA SLI или AMD Crossfire, вы увидите их, идентифицированные «#» в их имени.

Windows отображает использование GPU в реальном времени. По умолчанию диспетчер задач пытается отобразить самые интересные четыре движка в соответствии с тем, что происходит в вашей системе. Например, вы увидите разные графики в зависимости от того, играете ли вы в 3D-игры или кодируете видео. Однако вы можете щелкнуть любое из имен над графиками и выбрать любой из других доступных движков.

Название вашего GPU также отображается на боковой панели и в верхней части этого окна, что позволяет легко проверить, какое графическое оборудование установлено на вашем ПК.

Вы также увидите графики использования выделенной и общей памяти GPU . Использование общей памяти GPU относится к тому, какая часть общей памяти системы используется для задач GPU . Эта память может использоваться как для обычных системных задач, так и для видеозаписей.

В нижней части окна вы увидите информацию, такую как номер версии установленного видеодрайвера, дату разработки и физическое местоположение GPU в вашей системе.

Если вы хотите просмотреть эту информацию в более маленьком окне, которое проще оставить на экране, дважды щелкните где-нибудь внутри экрана графического процессора или щелкните правой кнопкой мыши в любом месте внутри него и выберите параметр «Графическая сводка ». Вы можете развернуть окно, дважды щелкнув на панели или щелкнув правой кнопкой мыши в нем и сняв флажок «Графическая сводка ».

Вы также можете щелкнуть правой кнопкой мыши по графику и выбрать «Изменить график »> «Одно ядро », чтобы просмотреть только один график движка GPU .

Чтобы это окно постоянно отображалось на вашем экране, нажмите «Параметры »> «Поверх остальных окон ».

Дважды щелкните внутри панели GPU еще раз, и у вас будет минимальное окно, которое вы можете расположить в любом месте на экране.

Современные видеокарты, в силу требований от них огромной вычислительной мощи при работе с графикой, оснащаются своим собственным командным центром, иначе говоря - графическим процессором.

Это было сделано для того, чтобы «разгрузить» центральный процессор , который из-за своей широкой «сферы применения», просто не в состоянии справляться с требованиями, которые выдвигает современная игровая индустрия.

Графические процессоры (GPU) по сложности абсолютно не уступают центральным процессорам, но из-за своей узкой специализации, в состоянии более эффективно справляться с задачей обработки графики, построением изображения, с последующим выводом его на монитор.

Если говорить о параметрах, то они у графических процессоров весьма схожи с центральными процессорами. Это уже известные всем параметры, такие как микроархитектура процессора, тактовая частота работы ядра, техпроцесс производства. Но у них имеются и довольно специфические характеристики. Например, немаловажная характеристика графического процессора – это количество пиксельных конвейеров (Pixel Pipelines). Эта характеристика определяет количество обрабатываемых пикселей за один такт роботы GPU. Количество данных конвейеров может различаться, например, в графических чипах серии Radeon HD 6000, их количество может достигать 96.

Пиксельный конвейер занимается тем, что просчитывает каждый последующий пиксель очередного изображения, с учётом его особенностей. Для ускорения процесса просчёта используется несколько параллельно работающих конвейеров, которые просчитывают разные пиксели одного и того же изображения.

Также, количество пиксельных конвейеров влияет на немаловажный параметр – скорость заполнение видеокарты . Скорость заполнения видеокарты можно рассчитать умножив частоту ядра на количество конвейеров.

Давайте рассчитаем скорость заполнения, к примеру, для видеокарты AMD Radeon HD 6990 (рис.2) Частота ядра GPU этого чипа составляет 830 МГц, а количество пиксельных конвейеров – 96. Нехитрыми математическими вычислениями (830х96), мы приходим к выводу, что скорость заполнения будет равна 57,2 Гпиксель/c.


Рис. 2

Помимо пиксельных конвейеров, различают ещё так называемых текстурные блоки в каждом конвейере. Чем больше текстурных блоков, тем больше текстур может быть наложено за один проход конвейера, что также влияет на общую производительность всей видеосистемы. В вышеупомянутом чипе AMD Radeon HD 6990, количество блоков выборки текстур составляет 32х2.

В графических процессорах, можно выделить и другой вид конвейеров – вершинные, они отвечают за расчёт геометрических параметров трёхмерного изображения.

Сейчас, давайте рассмотрим поэтапный, несколько упрощенный, процесс конвейерного расчёта, с последующим формированием изображения:

1 - й этап. Данные о вершинах текстур поступают в вершинные конвейеры, которые занимаются рассчётом параметров геометрии. На этом этапе подключается блок «T&L» (Transform & Lightning). Этот блок отвечает за освещение и трансформацию изображения в трёхмерных сценах. Обработка данных в вершинном конвейере проходит за счёт программы вершинного шейдера (Vertex Shader).

2 - ой этап. На втором этапе формирования изображения подключается специальный Z-буфер, для отсечения невидимых полигонов и граней трёхмерных объектов. Далее происходит процесс фильтрации текстур, для этого в «бой» вступают пиксельные шейдеры. В программных интерфейсах OpenGL или Direct3D описаны стандарты для работы с трёхмерными изображениями . Приложение вызывает определённую стандартную функцию OpenGL или Direct3D, а шейдеры эту функцию выполняют.

3–ий этап. В завершающем этапе построения изображения в конвейерной обработке, данные передаются в специальный буфер кадров.

Итак, только что мы вкратце рассмотрели структуру и принципы функционирования графических процессоров, информация,конечно, «не из лёгких» для восприятия, но для общего компьютерного развития, я думаю, будет весьма полезна:)

Многие видели аббревиатуру GPU, но не каждый знает, что это такое. Это компонент , который входит в состав видеокарты . Иногда его называют видеокарта, но это не правильно. Графический процессор занимается обработкой команд, которые формируют трехмерное изображение. Это основной элемент, от мощности которого зависит быстродействие всей видеосистемы.

Есть несколько видов таких чипов – дискретный и встроенный . Конечно, сразу стоит оговорить, что лучше первый. Его ставят на отдельные модули. Он мощный и требует хорошего охлаждения . Второй устанавливается практически на все компьютеры. Он встраивается в CPU, делая потребление энергии в разы ниже. Конечно, с полноценными дискретными чипами ему не сравниться, но на данный момент он показывает довольно хорошие результаты .

Как работает процессор

GPU занимается обработкой 2D и 3D графики. Благодаря GPU ЦП компьютера становится свободнее и может выполнять более важные задачи. Главная особенность графического процессора в том, что он старается максимально увеличить скорость расчета графической информации. Архитектура чипа позволяет с большей эффективностью обрабатывать графическую информацию, нежели центральный CPU ПК.

Графический процессор устанавливает расположение трехмерных моделей в кадре. Занимается фильтрацией входящих в них треугольников, определяет, какие находятся на виду, и отсекает те, которые скрыты другими объектами.