Домой / Осваиваем ПК / Дискретность изображения. Дискретные изображения. Аналоговый и дискретный способы представления изображений и звука

Дискретность изображения. Дискретные изображения. Аналоговый и дискретный способы представления изображений и звука

Рассказать и показать на примере Паскаль: 1) Что такое absolute и для чего нужна? 2) Что такое asm и для чего нужна? 3) Что такое

constructor и destructor и для чего нужна?

4) Что такое implementation и для чего нужна?

5) Назовите модули Паскаль (в строке Uses, например crt) и какие возможности этот модуль дает?

6) Что за тип переменной: указательный (Pointer)

7) И на последок: что означает символ @ , #, $ , ^

1. Что такое объект?2. Что такое система?3. Что такое общее имя объекта? Приведите пример.4. Что такое единичное имя объекта? Приведите пример.5.

Приведите пример природной системы.6. Приведите пример технической системы.7. Приведите пример смешанной системы.8. Приведите пример нематериальной системы.9. Что такое классификация?10. Что такое класс объектов?

1. 23 вопрос - перечислите режимы работы субд access:

Создание таблицы в режиме конструктора;
-создание таблицы с помощью мастера;
-создание таблицы путем ввода данных.

2. что такое векторный формат?

3. можно ли отнести к сервисным программам следующее:
а) программы обслуживания дисков (копирование, лечение, форматирование и прочее)
б) сжатие файлов на дисках (архиваторы)
в) борьбы с комп-ми вирусами и многое другое.
сам думаю что тут ответ Б - прав или нет?

4. что относится к свойства алгоритма (а. дискретность, б. результативность в. массовость, г. определенность, г. выполнимость и понятность) - тут думаю, что все варианты правильные. Прав или нет?

тест 7 леких вопросов с выбором ответа

13. Тактовая частота процессора – это:

A. число двоичных операций, совершаемых процессором в единицу времени

B. число вырабатываемых за одну секунду импульсов, синхронизирующих работу узлов компьютера

C. число возможных обращений процессора к оперативной памяти в единицу времени

D. скорость обмена информацией между процессором и устройствами ввода/вывода

14.Укажите минимально необходимый набор устройств, предназначенных для работы компьютера:

A. принтер, системный блок, клавиатура

B. процессор, ОЗУ, монитор, клавиатура

C. процессор, стриммер, винчестер

D. монитор, системный блок, клавиатура

15. Что такое микропроцессор?

A. интегральная микросхема, которая выполняет поступающие на ее вход команды и управляет

Работой компьютера

B. устройство для хранения тех данных, которые часто используются в работе

C. устройство для вывода текстовой или графической информации

D. устройство для вывода алфавитно-цифровых данных

16.Взаимодействие пользователя с программной средой осуществляется с помощью:

A. операционной системы

B. файловой системы

C. приложения

D. файлового менеджера

17.Непосредственное управление программными средствами пользователь может осуществлять с

Помощью:

A. операционной системы

B. графического интерфейса

C. пользовательского интерфейса

D. файлового менеджера

18. Способы хранения данных на физическом носителе определяет:

A. операционная система

B. прикладное программное обеспечение

C. файловая система

D. файловый менеджер

19. Графическая среда, на которой отображаются объекты и элементы управления системы Windows,

Созданная для удобства пользователя:

A. аппаратный интерфейс

B. пользовательский интерфейс

C. рабочий стол

D. программный интерфейс

20. Скорость работы компьютера зависит от:

A. тактовой частоты процессора

B. наличия или отсутствия подключенного принтера

C. организации интерфейса операционной системы

D. объема внешнего запоминающего устройства

В систему обработки информации сигналы поступают, как правило, в непрерывном виде. Для компьютерной обработки непрерывных сигналов необходимо, прежде всего, преобразовать их в цифровые. Для этого выполняются операции дискретизации и квантования.

Дискретизация изображений

Дискретизация – это преобразование непрерывного сигнала в последовательность чисел (отсчетов), то есть представление этого сигнала по какому-либо конечномерному базису. Это представление состоит в проектировании сигнала на данный базис.

Наиболее удобным с точки зрения организации обработки и естественным способом дискретизации является представление сигналов в виде выборки их значений (отсчетов) в отдельных, регулярно расположенных точках. Такой способ называют растрированием , а последовательность узлов, в которых берутся отсчеты – растром . Интервал, через который берутся значения непрерывного сигнала называется шагом дискретизации . Обратная шагу величина называется частотой дискретизации ,

Существенный вопрос, возникающий в ходе дискретизации: с какой частотой брать отсчеты сигнала для того, чтобы была возможность его обратного восстановления по этим отсчетам? Очевидно, что если брать отсчеты слишком редко, то в них не будет содержаться информация о быстро меняющемся сигнале. Скорость изменения сигнала характеризуется верхней частотой его спектра. Таким образом, минимально допустимая ширина интервала дискретизации связана с наибольшей частотой спектра сигнала (обратно пропорциональна ей).

Для случая равномерной дискретизации справедлива теорема Котельникова , опубликованная в 1933 году в работе “О пропускной способности эфира и проволоки в электросвязи”. Она гласит: если непрерывный сигнал имеет спектр, ограниченный частотой , то он может быть полностью и однозначно восстановлен по его дискретным отсчетам, взятым с периодом , т.е. с частотой .

Восстановление сигнала осуществляется при помощи функции . Котельниковым было доказано, что непрерывный сигнал, удовлетворяющий приведенным выше критериям, может быть представлен в виде ряда:

.

Эта теорема так же еще называется теоремой отсчетов. Функция называется еще функцией отсчетов или Котельникова , хотя интерполяционный ряд такого вида изучал еще Уитакер в 1915 году. Функция отсчетов имеет бесконечную протяженность по времени и достигает наибольшего значения, равного единице, в точке , относительно которой она симметрична.

Каждую из этих функций можно рассматривать как отклик идеального фильтра низких частот (ФНЧ) на дельта-импульс, пришедший в момент времени . Таким образом, для восстановления непрерывного сигнала из его дискретных отсчетов, их необходимо пропустить через соответствующий ФНЧ. Следует заметить, что такой фильтр является некаузальным и физически нереализуемым.

Приведенное соотношение означает возможность точного восстановления сигналов с ограниченным спектром по последовательности их отсчетов. Сигналы с ограниченным спектром – это сигналы, спектр Фурье которых отличен от нуля только в пределах ограниченного участка области определения. Оптические сигналы можно отнести к ним, т.к. спектр Фурье изображений, получаемых в оптических системах, ограничен из-за ограниченности размеров их элементов. Частоту называют частотой Найквиста . Это предельная частота, выше которой во входном сигнале не должно быть спектральных компонентов.

Квантование изображений

При цифровой обработке изображений непрерывный динамический диапазон значений яркости делится на ряд дискретных уровней. Эта процедура называется квантованием . Её суть заключается в преобразовании непрерывной переменной в дискретную переменную , принимающую конечное множество значений . Эти значения называются уровнями квантования . В общем случае преобразование выражается ступенчатой функцией (рис. 1). Если интенсивность отсчета изображения принадлежит интервалу (т.е., когда ) , то исходный отсчет заменяется на уровень квантования , где пороги квантования . При этом полагается, что динамический диапазон значений яркости ограничен и равен .

Рис. 1. Функция, описывающая квантование

Основная задача при этом состоит в определении значений порогов и уровней квантования. Простейший способ решения этой задачи состоит в разбиении динамического диапазона на одинаковые интервалы. Однако такое решение не является наилучшим. Если значения интенсивности большинства отсчетов изображения сгруппированы, например, в "темной" области и число уровней ограничено, то целесообразно квантовать неравномерно. В "темной" области следует квантовать чаще, а в "светлой" реже. Это позволит уменьшить ошибку квантования.

В системах цифровой обработки изображений стремятся уменьшить число уровней и порогов квантования, так как от их количества зависит объем информации, необходимый для кодирования изображения. Однако при относительно небольшом числе уровней на квантованном изображении возможно появление ложных контуров. Они возникают вследствие скачкообразного изменения яркости проквантованного изображения и особенно заметны на пологих участках ее изменения. Ложные контуры значительно ухудшают визуальное качество изображения, так как зрение человека особенно чувствительно именно к контурам. При равномерном квантовании типичных изображений требуется не менее 64 уровней.

В предыдущей главе мы изучали линейные пространственно-инвариантные системы в непрерывной двумерной области. На практике мы имеем дело с изображениями, которые имеют ограниченные размеры и в то же время отсчитываются в дискретном наборе точек. Поэтому методы, разработанные до сих пор, необходимо приспособить, расширить и модифицировать так, чтобы их можно было применить и в такой области. Возникает также и несколько новых моментов, требующих аккуратного рассмотрения.

Теорема отсчетов говорит о том, при каких условиях по дискретному набору значений можно точно восстановить непрерывное изображение. Мы также узнаем, что происходит, когда условия ее применимости не выполняются. Все это имеет прямое отношение к разработке зрительных систем.

Методы, требующие перехода к частотной области, стали популярными частично благодаря алгоритмам быстрого вычисления дискретного преобразования Фурье. Однако нужно соблюдать осторожность, поскольку эти методы предполагают наличие периодического сигнала. Мы обсудим, как можно удовлетворить этому требованию и к чему приводит его нарушение.

7.1. Ограничение размеров изображения

На практике изображения всегда имеют конечные размеры. Рассмотрим прямоугольное изображение шириной и высотой Я. Теперь нет необходимости брать интегралы в преобразовании Фурье в бесконечных пределах:

Любопытно, что для восстановления функции нам необязательно знать на всех частотах. Знание того, что при представляет собой жесткое ограничение. Иными словами, функция, отличная от нуля только в ограниченной области плоскости изображения, содержит гораздо меньше информации, чем функция, не обладающая этим свойством.

Чтобы в этом убедиться, представим, что плоскость экрана покрыта копиями заданного изображения. Иными словами, мы расширяем наше изображение до периодической в обоих направлениях функции

Здесь - наибольшее целое число, не превосходящее х. Преобразование Фурье такого размноженного изображения имеет вид

С помощью подходящим образом подобранных множителей сходимости в упр. 7.1 доказывается, что

Следовательно,

откуда мы видим, что равна нулю всюду, кроме дискретного набора частот Таким образом, чтобы найти нам достаточно знать в этих точках. Однако функция получается из простым отсечением участка, для которого . Поэтому, чтобы восстановить нам достаточно знать лишь для всех Это - счетное множество чисел.

Обратите внимание на то, что преобразование периодической функции оказывается дискретным. Обратное преобразование можно представить в виде ряда, поскольку

Другой способ убедиться в этом - рассматривать функцию как функцию, получающуюся обрезанием некоторой функции для которой внутри окна. Иными словами, где функция выделения окна определяется следующим образом.

Рассмотрим непрерывное изображение – функцию двух пространственных переменных x 1 и x 2 f (x 1 , x 2) на ограниченной прямоугольной области (рисунок 3.1).

Рисунок 3.1 – Переход от непрерывного изображения к дискретному

Введем понятие шага дискретизации Δ 1 по пространственной переменной x 1 и Δ 2 по переменной x 2 . Например, можно представить, что в точках, удаленных друг от друга на расстояние Δ 1 по оси x 1 расположены точечные видеодатчики. Если такие видеодатчики установить по всей прямоугольной области, то изображение окажется заданным на двумерной решетке

Для сокращения записи обозначим

Функция f (n 1 , n 2) является функцией двух дискретных переменных и называется двумерной последовательностью. То есть дискретизация изображения по пространственным переменным переводит его в таблицу выборочных значений. Размерность таблицы (число строк и столбцов) определяется геометрическими размерами исходной прямоугольной области и выбором шага дискретизации по формуле

Где квадратные скобки […] обозначают целую часть числа.

Если область определения непрерывного изображения - квадрат L 1 = L 2 = L, и шаг дискретизации выбран одинаковым по осям x 1 и x 2 (Δ 1 = Δ 2 = Δ), то

и размерность таблицы составляет N 2 .

Элемент таблицы, полученной путем дискретизации изображения, называют «пиксель» или «отсчет» . Рассмотрим пиксель f (n 1 , n 2). Это число принимает непрерывные значения. Память компьютера способна хранить только дискретные числа. Поэтому для записи в памяти непрерывная величина f должна быть подвергнута аналогово-цифровому преобразованию с шагом Df (см. рисунок 3.2).

Рисунок 3.2 – Квантование непрерывной величины

Операцию аналого-цифрового преобразования (дискретизации непрерывной величины по уровню) часто называют квантованием . Число уровней квантования, при условии, что значения функции яркости лежат в интервале _____ _ ____ ___, равно

В практических задачах обработки изображений величина Q варьируется в широких пределах от Q = 2 («бинарные» или «черно-белые» изображения) до Q = 210 и более (практически непрерывные значения яркости). Наиболее часто выбираются Q = 28, при этом пиксель изображения кодируется одним байтом цифровых данных. Из всего вышеуказанного делаем вывод, что пиксели, хранящиеся в памяти компьютера, представляют собой результат дискретизации исходного непрерывного изображения по аргументам (координатам?) и по уровням. (Где и сколько, и всё дискретно) Ясно, что шаги дискретизации Δ 1 , Δ 2 должны выбираться достаточно малыми, для того, чтобы погрешность дискретизации была незначительна, и цифровое представление сохраняло основную информацию об изображении.

При этом следует помнить, что чем меньше шаг дискретизации и квантования, тем больший объем данных об изображении должен быть записан в память компьютера. Рассмотрим в качестве иллюстрации этого утверждения изображение на слайде размером 50×50 мм, которое вводится в память с помощью цифрового измерителя оптической плотности (микроденситометра). Если при вводе линейное разрешение микроденситометра (шаг дискретизации по пространственным переменным) составляет 100 микрон, то в память записывается двумерный массив пикселей размерности N 2 = 500×500 = 25∙10 4 . Если же шаг уменьшить до 25 микрон, то размеры массива возрастут в 16 раз и составят N 2 = 2000×2000 = 4∙10 6 . Используя квантование по 256 уровням, то есть кодируя найденный пиксель байтом, получаем, что в первом случае для записи необходим объем 0,25 мегабайт памяти, а во втором случае 4 мегабайта.

Аналоговое и дискретное изображение. Графическая информация может быть представлена в аналоговой или дискретной форме. Примером аналогового изображения может служить живописное полотно, цвет которого изменяется непрерывно, а примером дискретного изображения, напечатанный с помощью струйного принтера рисунок, состоящий из отдельных точек разного цвета. Аналоговое (картина маслом). Дискретное.

Слайд 11 из презентации «Кодирование и обработка информации» . Размер архива с презентацией 445 КБ.

Информатика 9 класс

краткое содержание других презентаций

«Алгоритмы разветвляющейся структуры» - ЕСЛИ условие, ТО действие. Что мы знаем. Структура урока. Разветвляющийся алгоритм. Выполните алгоритм и заполните таблицу. Во второй тур конкурса проходит обучающийся, набравший от 85 до 100 баллов включительно. Ввести количество баллов и определить, прошел ли он во второй тур. Найти наибольшее число между а и b. Составить программу на языке программирования. Разветвляющийся алгоритм – это алгоритм, в котором в зависимости от условия выполняется либо одна, либо другая последовательность действий.

«Создание искусственного интеллекта» - Имитационный подход. Подходы к построению систем искусственного интеллекта. Эволюционный подход. Искусственный интеллект. Может сожительствовать со многими людьми, помогая справляться с личными проблемами. Структурный подход. Логический подход. Проблемы при разработке. Перспективы развития и области применения.

«Циклические программы» - Цифра. Цикл с предусловием. Найти сумму. Цикл с постусловием. Цикл с параметром. Алгоритм Евклида. Циклические программы. Найти сумму натуральных чисел. Понятие цикла. Первоначальный взнос. Табулирование функции. Вычислить. Пример. Делители. Информатика. Найти количество чисел. Найти. Найти количество трехзначных натуральных чисел. Трехзначные числа. Найти множество значений функции. Таблица перевода долларов.

«Что такое электронная почта» - Отправитель. Адрес электронной почты. История электронной почты. Вопрос появления электронной почты. Структура письма. Маршутизация почты. Письмо. Электронное письмо. Копия. Дата. X-mailer. Электронная почта. Как работает электронная почта.

«Работа с электронной почтой» - Адрес электронной почты. Почтовый ящик. Протокол электронной почты. Файлообменная сеть. Разделение адресов. Преимущества электронной почты. Почтовые клиенты. Изобретатель электронной почты. Адрес. Электронная почта. ПО для работы с электронной почтой. Как работает электронная почта. Телеконференция. Почтовый сервер. Обмен файлами.

«Обработка в Photoshop» - Крутые ребята. Как отличить подделку. Растровые и векторные изображения. Введение. Призовые места. Программа Adobe Photoshop. Ретуширование. Конкурсы по работе с «фотошопом». Корректирование яркости. Мои друзья. Практическая часть. Похожие программы. Основная часть. Дизайн. Необычные животные. Монтаж нескольких изображений.