Домой / Осваиваем ПК / Полоса частот в телефонии. Основные типы абонентских телефонных линий и услуг. Аналоговые линии, цифровые линии

Полоса частот в телефонии. Основные типы абонентских телефонных линий и услуг. Аналоговые линии, цифровые линии

Основные параметры полосы пропускания

Основные параметры, которые характеризуют полосу пропускания частот - это ширина полосы пропускания и неравномерность АЧХ в пределах полосы.

Ширина полосы

Ширина полосы обычно определяется как разность верхней и нижней граничных частот участка АЧХ, на котором амплитуда колебаний (или для мощности) от максимальной. Этот уровень приблизительно соответствует -3 дБ .

Ширина полосы пропускания выражается в единицах частоты (например, в Гц).

Расширение полосы пропускания позволяет передать большее количество информации.

Неравномерность АЧХ

Неравномерность АЧХ характеризует степень отклонения от прямой, параллельной оси частот.

Неравномерность АЧХ выражается в децибелах .

Ослабление неравномерности АЧХ в полосе улучшает воспроизведение формы передаваемого сигнала.

Конкретные примеры

В теории антенн полоса пропускания - диапазон частот, при которых антенна работает эффективно, обычно окрестность центральной (резонансной) частоты. Зависит от типа антенны, ее геометрии. На практике полоса пропускания обычно определяется по уровню КСВ (коэффициента стоячей волны). КСВ МЕТР

В оптике полоса пропускания - это величина, обратная к величине уширения импульса при прохождении им по оптическому волокну расстояния в 1 км.

Поскольку даже самый лучший монохроматичный лазер всё равно излучает некоторый спектр длин волн, дисперсия приводит к уширению импульсов при распространении по волокну и тем самым порождает искажения сигналов. При оценке этого пользуются термином полоса пропускания. Измеряется полоса пропускания (в данном случае) в МГц/км.

Из определения полосы пропускания видно, что дисперсия накладывает ограничение на дальность передачи и на верхнюю частоту передаваемых сигналов.

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Полоса частот" в других словарях:

    полоса частот - Область частот, ограниченная нижним и верхним пределами [ГОСТ 24375 80] полоса частот Совокупность частот в рассматриваемых пределах [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения… …

    полоса частот - 06.01.16 полоса частот [ frequency band]: Непрерывный набор частот, ограниченный верхним и нижним пределами. Примечание 1 Полоса частот характеризуется двумя значениями, которые определяют ее положение на частотной оси, например, ее нижняя и… … Словарь-справочник терминов нормативно-технической документации

    Полоса частот - 1. Область частот, ограниченная нижним и верхним пределами Употребляется в документе: ГОСТ 24375 80 2. Непрерывная полоса частот, заключенная между двумя пределами Употребляется в документе: ГОСТ Р 51317.4.3 99 Устойчивость к радиочастотному… … Телекоммуникационный словарь

    полоса частот - dažnių juosta statusas T sritis fizika atitikmenys: angl. frequency band vok. Frequenzband, n rus. полоса частот, f; частотная полоса, f pranc. bande de fréquences, f … Fizikos terminų žodynas

    полоса частот - dažnių juosta statusas T sritis automatika atitikmenys: angl. frequency band vok. Frequenzband, n rus. полоса частот, f pranc. bande de fréquences, f … Automatikos terminų žodynas

    полоса частот - dažnių juosta statusas T sritis Standartizacija ir metrologija apibrėžtis Signalų generatoriaus dažnių diapazono dalis, kurioje dažnį galima keisti tolydžiai arba pakopomis. atitikmenys: angl. frequency band vok. Frequenzbereich, n rus. полоса… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    полоса частот - rus полоса (ж) частот, диапазон (м) частот eng frequency band fra bande (f) de fréquence deu Frequenzband (n) spa rango (m) de frecuencias, banda (f) de frecuencias … Безопасность и гигиена труда. Перевод на английский, французский, немецкий, испанский языки

    полоса частот (в электросвязи) - полоса частот диапазон частот Область изменения частоты сигнала, ограниченная нижним и верхним пределами. На практике широко применяется определение верхней границы по формуле fниж(n)=3·10n 1 Гц, при этом нижняя граница равна верхней… … Справочник технического переводчика

    полоса частот (в вибрации) - полоса частот Совокупность частот в рассматриваемых пределах [ГОСТ 24346 80] Тематики вибрация EN frequency band DE frequenzband FR bande de frequence … Справочник технического переводчика

    полоса частот СВЧ диода - Δf/f Δf/f Интервал частот, в котором СВЧ диод, настроенный на заданную частоту, обеспечивает заданные параметры и характеристики в неизменном рабочем режиме. [ГОСТ 25529 82] Тематики полупроводниковые приборы Обобщающие термины… … Справочник технического переводчика

Обеспечивающая передачу электрических сигналов связи в эффективно передаваемой полосе частот (ЭППЧ) 0,3 - 3,4 кГц. В телефонии и связи часто используется аббревиатура КТЧ. Канал тональной частоты является единицей измерения ёмкости (уплотнения) аналоговых систем передачи (например, K-24, K-60, K-120). В то же время для цифровых систем передачи (например, ИКМ-30, ИКМ-480, ИКМ-1920) единицей измерения ёмкости является основной цифровой канал .

Эффективно передаваемая полоса частот - полоса частот , остаточное затухание на крайних частотах которой отличается от остаточного затухания на частоте 800 Гц не более чем на 1 Нп при максимальной дальности связи, свойственной данной системе.

Ширина ЭППЧ определяет качество телефонной передачи, и возможности использования телефонного канала для передачи других видов связи. В соответствии с международным стандартом для телефонных каналов многоканальной аппаратуры установлена ЭППЧ от 300 до 3400 Гц. При такой полосе обеспечивается высокая степень разборчивости речи, хорошая естественность её звучания и создаются большие возможности для вторичного уплотнения телефонных каналов.

Энциклопедичный YouTube

    1 / 3

    ✪ Теория: радиоволны, модуляция и спектр.

    ✪ Звуковой генератор своими руками Инструмент электромонтажника. Схема звукового генератора

    ✪ Цифровой сигнал

    Субтитры

Режимы работы канала ТЧ

Назначение режимов

  • 2 ПР. ОК - для открытой телефонной связи при отсутствии на телефонном коммутаторе транзитных удлинителей;
  • 2 ПР. ТР - для временных транзитных соединений открытых телефонных каналов, а также для оконечной связи при наличии на телефонном коммутаторе транзитных удлинителей;
  • 4 ПР ОК - для использования в сетях многоканального тонального телеграфа, закрытой телефонной связи, передачи данных и т. п., а также для транзитных соединений при значительных длинах соединительных линий;
  • 4 ПР ТР - для долговременных транзитных соединений.

Обычно нам нет дела до того, как работает телефонная линия (но только не тогда, когда приходится кричать изо всех сил в телефонную трубку: "Повторите пожалуйста, ничего не слышно!").

Телефонные компании предоставляют клиенту множество самых разных услуг. В прейскурантах этих услуг разобраться не так просто - что, собственно, предлагается, и сколько за какую услугу следует платить. В этой статье мы ни словом не обмолвимся о ценах, однако попытаемся выяснить, в чем различие между наиболее часто предлагаемыми продуктами и услугами в области телефонной связи.

АНАЛОГОВЫЕ ЛИНИИ, ЦИФРОВЫЕ ЛИНИИ

Во-первых, линии бывают аналоговые и цифровые. Аналоговый сигнал меняется непрерывным образом; он всегда имеет определенное значение, представляющее, например, громкость и высоту передаваемого голоса или цвет и яркость определенного участка изображения. Цифровые сигналы имеют только дискретные значения. Как правило, сигнал либо включен, либо выключен, либо он есть, либо его нет. Иными словами, его значение равно или 1 или 0.

Аналоговые телефонные линии используются в телефонии с незапамятных времен. Даже телефоны пятидесятилетней давности, скорее всего, удастся подключить к абонентскому шлейфу - линии между домашней телефонной розеткой и центральной телефонной станцией. (Центральная телефонная станция - это не сверкающий небоскреб в центре города; длина абонентского шлейфа в среднем не превышает 2,5 миль (четырех километров), так что "центральная телефонная станция", как правило, помещается в каком-нибудь невзрачном здании неподалеку.)

Во время телефонного разговора встроенный в телефонную трубку микрофон преобразует речь в аналоговый сигнал, передаваемый на центральную телефонную станцию, откуда он попадает либо на другой абонентский шлейф, либо на другие коммутационные устройства, если вызываемый номер находится вне зоны действия данной станции. При наборе номера телефонный аппарат генерирует передаваемые по тому же основному каналу сигналы (in-band signals), указывающие, кому предназначен данный вызов.

За время своего существования телефонные компании накопили большой опыт в передаче речи. Установлено, что для выполнения этой задачи в основном достаточен диапазон частот от 300 до 3100 Гц. Напомним, что аудиосистемы класса hi-fi способны воспроизводить звук без искажений в частотном диапазоне 20-20000 Гц, а значит, телефонного диапазона хватает обычно только для того, чтобы абонент мог узнать звонящего по голосу (для других применений этот диапазон с большой вероятностью окажется чересчур узок - для передачи музыки, например, телефонная связь совершенно не годится). Плавный спад амплитудно-частотной характеристики на высоких и низких частотах телефонные компании обеспечивают с помощью аналогового телефонного канала 4000 Гц.

Центральная телефонная станция, как правило, оцифровывает сигнал, предназначенный для дальнейшей передачи по телефонной сети. За исключением Джилбет Каунти (шт. Арканзас) и Рэт Форк (шт. Вайоминг), во всех американских телефонных сетях сигнал между центральными станциями передается в цифровом виде. Хотя во многих компаниях используются цифровые учрежденческие АТС и средства передачи данных, а все средства ISDN основаны на цифровой кодировке, абонентские шлейфы по-прежнему остаются "последним оплотом" аналоговой связи. Объясняется это тем, что большинство телефонов в частных домах не имеют средств оцифровки сигнала и не могут работать с линиями пропускной способностью свыше 4000 Гц.

НА ЧТО ХВАТАЕТ 4000 ГЦ?

Модем - это устройство, преобразующее цифровые сигналы компьютера в аналоговые сигналы с частотами, в пределах полосы пропускания телефонной линии. Максимальная пропускная способность канала напрямую связана с полосой пропускания. Точнее, величина пропускной способности (в битах/сек) определяется полосой пропускания и допуском на отношение сигнал/шум. В настоящее время максимальная пропускная способность модемов - 33,6 Кбит/с - уже близка к этому пределу. Пользователи модемов с пропускной способностью 28,8 Кбит/с хорошо знают, что зашумленные аналоговые линии редко обеспечивают их полную пропускную способность, которая часто оказывается куда ниже. Сжатие, кэширование и прочие увертки помогают несколько выправить ситуацию, и тем не менее мы скорее доживем до изобретения вечного двигателя, чем до появления модемов с пропускной способностью 50 или хотя бы 40 Кбит/с на обычных аналоговых линиях.

Телефонные компании решают обратную задачу - оцифровывают аналоговый сигнал. Для передачи получающегося цифрового сигнала используются каналы пропускной способностью 64 Кбит/с (это - мировой стандарт). Такой канал, именуемый DS0 (digital signal, нулевой уровень), является базовым кирпичиком, из которого строятся все прочие телефонные линии. Например, можно объединить (правильный термин - уплотнить) 24 канала DS0 в канал DS1. Арендуя линию T-1, пользователь фактически получает канал DS1. Подсчитывая суммарную пропускную способность DS1, надо помнить, что после каждых 192 информационных бит (то есть 8000 раз в секунду) передается один бит синхронизации: всего получается 1,544 Мбит/с (64000 умножить на 24 плюс 8000).

ВЫДЕЛЕННЫЕ ЛИНИИ, КОММУТИРУЕМЫЕ ЛИНИИ

Помимо линии Т-1 клиент может арендовать выделенные линии или пользоваться обычными коммутирующими линиями. Арендуя у телефонной компании канал T-1 или низкоскоростную линию передачи данных, например цифровую линию dataphone (dataphone digital service, DDS), абонент фактически берет напрокат прямое соединение и в результате становится единственным пользователем канала с пропускной способностью 1,544 Мбит/с (T-1) или 56 Кбит/с (низкоскоростная линия).

Хотя технология frame relay и предполагает коммутацию индивидуальных кадров, соответствующие услуги предлагаются пользователю в виде виртуальных каналов связи между фиксированными конечными точками. С точки зрения архитектуры сети, frame relay следует рассматривать, скорее, как выделенную, нежели как коммутируемую линию; немаловажен тот факт, что цена такой услуги при той же пропускной способности существенно ниже.

Коммутационные услуги (примером их может служить обслуживание обычного квартирного телефона) - это услуги, приобретаемые у телефонной компании. Абоненту по требованию предоставляется осуществляемое с помощью сети коммутаторов общего пользования соединение с любым узлом телефонной сети. В отличие от ситуации с выделенными линиями, плата в этом случае взимается за время соединения или реальный объем трафика и зависит большей частью от частоты и объема пользования сетью. Коммутационные услуги цифровой связи могут предоставляться на основе протоколов X.25, Switched 56, ISDN Basic Rate Interface (BRI), ISDN Primary Rate Interface (PRI), Switched Multimegabit Data Service (SMDS) и ATM. Некоторые организации, например университеты, железные дороги или муниципальные организации, создают частные сети с использованием собственных коммутаторов и арендованных, а порой даже своих собственных линий.

Если линия, полученная от телефонной компании, цифровая, то для обмена данными между телефонной сетью и оконечным оборудованием (этим термином телефонные компании обозначают такое оборудование, как компьютеры, факсимильные аппараты, видеотелефоны и цифровые телефонные аппараты) не требуется выполнять преобразование цифровых сигналов в аналоговые, а следовательно, необходимость в модеме отпадает. Тем не менее и в этом случае пользование телефонной сетью накладывает определенные требования на абонента. В частности, следует обеспечивать корректную концевую заделку абонентского шлейфа, правильную передачу трафика и поддержку диагностики, выполняемой телефонной компанией.

Линия, поддерживающая протокол ISDN BRI, должна быть подсоединена к устройству под названием NT1 (network termination 1). Помимо концевой заделки линии и поддержки диагностических процедур устройство NT1 осуществляет согласование двухпроводного абонентского шлейфа с четырехпроводной системой цифрового оконечного оборудования. При использовании арендованных цифровых линий T-1 или DDS, а также услуг цифровой связи в качестве нагрузки линии следует использовать модуль обслуживания канала (channel service unit, CSU). CSU работает как терминатор, обеспечивает корректную нагрузку линии и отрабатывает команды диагностики. Оконечное оборудование, имеющееся у клиента, взаимодействует с модулем обслуживания данных (data service unit, DSU), который преобразует цифровые сигналы к стандартному виду и передает их на CSU. Конструктивно CSU и DSU часто объединяются в один модуль под названием CSU/DSU. DSU можно встроить в маршрутизатор или мультиплексор. Таким образом, и в этом случае (хотя модемы здесь не нужны) потребуется установка определенных интерфейсных устройств.

НОСИТЕЛИ ДЛЯ ТЕЛЕФОННОЙ СВЯЗИ

Большинство аналоговых абонентских шлейфов лишь при очень благоприятных условиях могут обеспечить пропускную способность в 33,6 Кбит/с. С другой стороны, та же самая витая пара, соединяющая офис с центральной телефонной станцией, вполне может использоваться для работы с ISDN BRI, что дает пропускную способность по данным 128 Кбит/с и еще 16 Кбит/с для управления и настройки. В чем тут дело? Сигнал, передаваемый по аналоговым телефонным лииниям, подвергается фильтрации для подавления всех частот свыше 4 КГц. При использовании цифровых линий такой фильтрации не требуется, поэтому полоса пропускания витой пары оказывается существенно шире, а следовательно, повышается и пропускная способность.

Арендуемые линии с пропускной способностью 56 и 64 Кбит/с представляют собой двухпроводные или четырехпроводные цифровые линии (в последнем случае одна пара используется для передачи, а другая - для приема). Эти же линии пригодны в качестве носителя для предоставления услуг цифровой связи, например frame relay или Switched 56. В качестве носителя для T-1, а также ISDN PRI и frame relay часто применяются четырехпроводные линии или даже оптические кабели. Линии T-3 иногда представляют собой коаксиальный кабель, но чаще они все-таки выполняются на основе оптического.

Хотя ISDN по-прежнему и привлекает самое широкое внимание как средство высокоскоростной передачи сигнала на большие расстояния, в последнее время появились более новые средства связи для "последней мили" (т.е. абонентского шлейфа). Компании PairGain и AT&T Paradyne предлагают продукты на базе разработанной компанией Bellcore технологии высокоскоростного цифрового абонентского шлейфа (high bit-rate digital subscriber loop, HDSL). Данные продукты позволяют уравнять возможности всех имеющихся абонентских шлейфов; установив устройства HDSL на обоих концах линии, можно получить пропускную способность DS1 (1,544 Мбит/с) практически на всех существующих абонентских шлейфах. (HDSL длиной до 3,7 км может использоваться на абонентских шлейфах без повторителей в случае стандартных проводов 24 калибра. Для работы обычных линий T-1 необходимо ставить повторители через каждые километр-полтора). Альтернативой HDSL в достижении пропускной способности DS1 на "последней миле" является либо использование оптического кабеля (что весьма накладно), либо установка нескольких повторителей на каждой линии (это не так дорого, как оптоволоконная техника, но все равно недешево). Кроме того, в данном случае существенно возрастают расходы телефонной компании, а следовательно и клиента, на поддержание линии в рабочем состоянии.

Но даже и HDSL - не последнее слово техники в области увеличения пропускной способности на "последней миле". Ожидается, что наследник HDSL, технология асимметричного цифрового абонентского шлейфа (asymmetrical digital subscriber line, ASDL), сможет обеспечить пропускную способность 6 Мбит/с в одном направлении; пропускная способность другого существенно ниже - что-нибудь около 64 Кбит/с. В идеале или, как минимум, при отсутствии чьей-либо монополии - если считать, что стоимость услуги для клиента примерно соответствует ее себестоимости для телефонной компании - большая доля клиентов могла бы пользоваться ISDN PRI (или другими услугами на базе T-1) по цене, сравнимой с теперешней ценой ISDN BRI.

Однако сегодня сторонникам ISDN, скорее всего, беспокоиться не о чем; в большинстве случаев телефонные компании предпочтут увеличить пропускную способность линий и положить всю прибыль себе в карман без снижения стоимости услуг для клиента. Вовсе не очевидно, что тарифы на услуги должны быть основаны на здравом смысле.

Таблица 1. Типы телефонных услуг

Тип линии

Услуга

Вид коммутации

Носитель абонентского шлейфа

Аналоговая линия

Коммутация линий

Двухпроводная витая пара

DS0 (64 Кбит/с)

DDS (арендуемая линия)

Выделенная линия

PVC с коммутацией

Двух- или четырехпроводная витая пара

Коммутация

Двух- или четырехпроводная витая пара

Коммутация линий

Двух- или четырехпроводная витая пара

Коммутация линий

Двух- или четырехпроводная витая пара

Коммутация линий

Двухпроводная витая пара

Несколько DS0

(от 64 Кбит/с до

1536 Мбит/с с

Шагом 64 Кбит/с)

Выделенная линия

Двух- или четырехпроводная витая пара

PVC с коммутацией

Двух- или четырехпроводная витая пара

(1544 Мбит/с)

(24 линии DS0)

Арендуемая линия T-1

Выделенная линия

PVC с коммутацией

Четырехпроводная витая пара или оптоволокно

Коммутация пакетов

Четырехпроводная витая пара или оптоволокно

Коммутация линий

Четырехпроводная витая пара или оптоволокно

(44736 Мбит/с)

(28 линий DS1,

672 линии DS0)

Сотовая коммутация

Коммутация пакетов

Коаксиальный кабель или оптоволокно

Со Стивом Штайнке можно связаться через Internet по адресу:

Date:2016/4/18 16:13:20 Hits:

Ян Poole

Замечания и детали частотной модуляции полосы пропускания, спектра и боковых полос, а также их влияние на использование FM.

Ширина полосы частот, спектр и боковые полосы имеют большое значение при использовании частотной модуляции.

Боковые полосы модулированного сигнала частоты простираются по обе стороны от основной несущей, и привести к пропускной способности общего сигнала, чтобы увеличить далеко за рамки этого немодулированной несущей.

По мере того как модуляция несущей изменяется, так что боковые полосы и, следовательно, пропускную способность и общий спектр сигнала.

Частота модуляции функции Бесселя и боковые полосы

Любой сигнал, который модулируется производит боковые полосы. В случае амплитудно-модулированного сигнала, они легко определить, но для частотной модуляции ситуация не столь проста. , Они зависят от не только отклонения, но и уровень отклонения, то есть индекс модуляции M. Полный спектр представляет собой бесконечный ряд дискретных спектральных компонентов, выраженных сложной формуле с использованием функции Бесселя первого рода.


Полный спектр можно видеть, состоит из носителя плюс бесконечное число боковых полос распространяющейся по обе стороны от несущей при целых кратных частоте модуляции. Относительные уровни боковых полос можно получить, обратившись к таблице функций Бесселя. Как видно из изображения ниже, что относительные уровни поднимаются и опускаются в соответствии с различными значениями индекса модуляции.

Относительные уровни несущей и боковых полос для частотно-модулированного сигнала

При малых значениях индекса модуляции, при использовании узкополосного FM, и сигнал FM состоит из несущей и двух боковых полос, разнесенных на частоте модуляции по обе стороны от несущей. Это выглядит таким же, как сигнал АМ, но разница в том, что нижняя боковая полоса находится вне фазы 180 градусов.

По мере увеличения индекса модуляции обнаруживается, что другие боковые полосы с удвоенной частотой модуляции начинают появляться. По мере увеличения индекса другие дополнительные боковые полосы можно также увидеть.


Спектры сигнала FM с различными уровнями индекса модуляции

При определенных уровнях модуляции, где индекс модуляции равен фигуры 2.41, 5.53, 8.65 и других высших конкретных уровней, носитель падает на фактические цифры фигуры нулю, то сигнал, состоит просто из боковых полос.

полоса модуляции частоты

В случае с амплитудно-модулированным сигналом необходимая полоса пропускания в два раза превышает максимальную частоту модуляции. Несмотря на то, то же самое справедливо и для узкополосного сигнала FM, ситуация не верно для широкополосного сигнала FM. Здесь требуемая пропускная способность может быть очень большим, с обнаруживаемые боковые полосы разводя на больших количеств частотного спектра. Обычно необходимо, чтобы ограничить ширину полосы сигнала, таким образом, чтобы он не ненужных помех станциям обеих сторон.

В качестве частотно-модулированный сигнал имеет боковые полосы, которые простираются до бесконечности, нормально принятой практикой, чтобы определить пропускную способность, что и который содержит приблизительно 98% от мощности сигнала.

Правило большого пальца, часто называют Правило Карсон утверждает, что 98% мощности сигнала содержится в полосе частот, равной частоте отклонения, плюс частота модуляции в два раза, то есть:



Обычно ширина полосы частот широкополосного сигнала FM ограничена пределом Правило по Карсона - это уменьшает помехи и не вносит каких-либо неоправданных искажения сигнала. Другими словами для УКВ-FM станции вещания это должно быть (2 х 75) + 15 кГц, т.е. 175 кГц. С учетом этого в общей сложности 200 кГц обычно допускается, что позволяет станции иметь небольшую защитную полосу и их центральные частоты на целых чисел 100 кГц.

Ключевые моменты для ширины полосы частот модуляции и боковых полос

Есть несколько интересных точек по отношению к суммарной ширине полосы частот модуляции:

Ширина полосы частот модулированного сигнала изменяется как с отклонением частоты и коэффициента модуляции.

Увеличение частоты модуляции снижает индекс модуляции - это уменьшает число боковых полос со значительной амплитудой и, следовательно, ширины полосы.

Увеличение частоты модуляции увеличивает разделение частот между боковыми полосами.

Частота полосы пропускания модуляции возрастает с увеличением частоты модуляции, но не прямо пропорционально ему.

ширина полосы частот модуляции имеет важное значение, как это с какой-либо другой формы сигнала. С группой занятости растет, и давление на пространстве спектра, необходимо обеспечить полосу пропускания частоты модулированного сигнала находящиеся в его указанной надбавки. Любое неправомерное распространение сигнала за пределами этого, вероятно, вызовет помехи другим пользователям.

Ответов: 9

Вопрос знатокам: Кокова полоса передаваемых звуковых частот в телефонной связи

С уважением, Nurslan

Лучшие ответы

Николай Иванов:

300 Гц — 3400 Гц. или суженый 0,3 — 2,7 кГц

Что значит звуковых частот, частота есть в канале передачи — беспроводном или проводном — это частота электромагнитной волны, а частота звука это зависит от динамика в телефонной трубке. Звук то не передается в связных каналах))

комбат:

эффуктивно передаваемая полоса частот телефонных каналов 0,3-3,4 кГц (стандартный телефонный канал) , для возможности уплотнения канала, т. е. передачи в канал чего-нибудь еще, кроме звука, используются зауженные каналы 0,3-2,7 кГц

Видео-ответ

Это видео поможет разобраться

Ответы знатоков

Владимир Николаев:

если сигнал имеет синусоидальный вид то его полоса одна частота зтой синусоиды если сигнал импульсный то его можно разложить в ряд Фурье он будет преставлять несколько синусоидальных частот вот вся полоса занимаемая этими частотами и называется полосой

An Drew:

Руслан Мамышев:

свои слова не нашлись — начните с этого, а когда поймёте — задайте вопрос поинтересней …

Вольный ветер:

Ну сам вопрос и есть ответ — полоса частот, короче от сих до сих…. В википедию уже боязно заходить, валенки и там, ультразвук задрали от 20 кгц до 1 ГГц, я чуть не упал, и еще гиперзвук свыше 1ГГц….))))))))))) Это каким валенком его ударили? Что так в вику пишут….

Нормально Всё:

Любой конечный во времени сигнал имеет БЕСКОНЕЧНО большую ширину спектра.
Следует говорить об
э ф ф е к т и в н о й ширине спектра, в которой сосредоточено 90% энергии (по соглашению)
сигнала.
osnovy-elektrotekhniki. ru/energeticheskie-xarakteristiki/

Канал тональной частоты (англ. voice frequency circuit) - это совокупность технических средств и среды распространения, обеспечивающая передачу электрических сигналов связи в эффективно передаваемой полосе частот (ЭППЧ) 0,3 - 3,4 кГц. В телефонии и связи часто используется аббревиатура КТЧ. Канал тональной частоты является единицей измерения ёмкости (уплотнения) аналоговых систем передачи (например, K-24, K-60, K-120). В то же время для цифровых систем передачи (например, ИКМ-30, ИКМ-480, ИКМ-1920) единицей измерения ёмкости является основной цифровой канал.
Эффективно передаваемая полоса частот - полоса частот, остаточное затухание на крайних частотах которой отличается от остаточного затухания на частоте 800 Гц не более чем на 1 Нп при максимальной дальности связи, свойственной данной системе.
Ширина ЭППЧ определяет качество телефонной передачи, и возможности использования телефонного канала для передачи других видов связи. В соответствии с международным стандартом для телефонных каналов многоканальной аппаратуры установлена ЭППЧ от 300 до 3400 Гц. При такой полосе обеспечивается высокая степень разборчивости речи, хорошая естественность её звучания и создаются большие возможности для вторичного уплотнения телефонных каналов.