Домой / Полезно знать / Пространственные и динамические модели. Классификация видов моделирования. Динамические модели. Примеры построения динамических моделей. Многофакторные динамические модели

Пространственные и динамические модели. Классификация видов моделирования. Динамические модели. Примеры построения динамических моделей. Многофакторные динамические модели

К моделям временных рядов, характеризующих зависимость результативной переменной от времени, относятся:

а) модель зависимости результативной переменной от трендовой компоненты или модель тренда;

б) модель зависимости результат. переменной от сезонной компоненты или модель сезонности;

в) модель зависимости результативной переменной от трендовой и сезонной компонент или модель тренда и сезонности.

Если экономические утверждения отражают динамическую (зависящую от фактора времени) взаимосвязь включённых в модель переменных, то значения таких перемен­ных датируют и называют динамическими или временными рядами. Если экономические утверждения отражают статическую (относящуюся к одному периоду времени) взаимосвязь всех включённых в модель переменных, то значения таких переменных принято называть пространственными данными. И надобности в их датировании нет. Лаговыми называются экзогенные или эндогенные переменные экономической модели, датированные предыдущими моментами времени и находящиеся в уравнении с текущими переменными. Модели, включающие лаговые переменные, относятся к классу динамических моделей. Предопределёнными называются лаговые и текущие экзогенные переменные, а также лаговые эндогенные переменные


23. Трендовые и пространственно-временные ЭМ в планировании экономики

Статистические наблюдения в социально-экономических исследованиях обычно проводятся регулярно через равные отрезки времени и представляются в виде временных рядов xt, где t = 1, 2, ..., п. В качестве инструмента статистического прогнозирования временных рядов служат трендовые регрессионные модели, параметры которых оцениваются по имеющейся статистической базе, а затем основные тенденции (тренды) экстраполируются на заданный интервал времени.

Методология статистического прогнозирования предполагает построение и испытание многих моделей для каждого временного ряда, их сравнение на основе статистических критериев и отбор наилучших из них для прогнозирования.



При моделировании сезонных явлений в статистических исследованиях различают два типа колебаний: мультипликативные и аддитивные. В мультипликативном случае размах сезонных колебаний изменяется во времени пропорционально уровню тренда и отражается в статистической модели множителем. При аддитивной сезонности предполагается, что амплитуда сезонных отклонений постоянна и не зависит от уровня тренда, а сами колебания представлены в модели слагаемым.

Основой большинства методов прогнозирования является экстраполяция, связанная с распространением закономерностей, связей и соотношений, действующих в изучаемом периоде, за его пределы, или - в более широком смысле слова - это получение представлений о будущем на основе информации, относящейся к прошлому и настоящему.

Наиболее известны и широко применяются трендовые и адаптивные методы прогнозирования. Среди последних можно выделить такие, как методы авторегрессии, скользящего среднего (Бокса - Дженкинса и адаптивной фильтрации), методы экспоненциального сглаживания (Хольта, Брауна и экспоненциальной средней) и др.

Для оценки качества исследуемой модели прогноза используют несколько статистических критериев.

При представлении совокупности результатов наблюдений в виде временных рядов фактически используется предположение о том, что наблюдаемые величины принадлежат некоторому распределению, параметры которого и их изменение можно оценить. По этим параметрам (как правило, по среднему значению и дисперсии, хотя иногда используется и более полное описание) можно построить одну из моделей вероятностного представления процесса. Другим вероятностным представлением является модель в виде частотного распределения с параметрами pj для относительной частоты наблюдений, попадающих в j-й интервал. При этом если в течение принятого времени упреждения не ожидается изменения распределения, то решение принимается на основании имеющегося эмпирического частотного распределения.

При проведении прогнозирования необходимо иметь в виду, что все факторы, влияющие на поведение системы в базовом (исследуемом) и прогнозируемом периодах, должны быть неизменны или изменяться по известному закону. Первый случай реализуется в однофакторном прогнозировании, второй - при многофакторном.

Многофакторные динамические модели должны учитывать пространственные и временные изменения факторов (аргументов), а также (при необходимости) запаздывание влияния этих факторов на зависимую переменную (функцию). Многофакторное прогнозирование позволяет учитывать развитие взаимосвязанных процессов и явлений. Основой его является системный подход к изучению исследуемого явления, а так же процесс осмысливания явления, как в прошлом, так и в будущем.

В многофакторном прогнозировании одной из основных проблем является проблема выбора факторов, обуславливающих поведение системы, которая не может быть решена чисто статистическим путем, а только при помощи глубокого изучения существа явления. Здесь следует подчеркнуть примат анализа (осмысливания) перед чисто статистическими (математическими) методами изучения явления. В традиционных методах (например, в методе наименьших квадратов) считается, что наблюдения независимы друг от друга (по одному и тому же аргументу). В действительности существует автокорреляция и ее неучет приводит к неоптимальности статистических оценок, затрудняет построение доверительных интервалов для коэффициентов регрессии, а также проверку их значимости. Автокорреляция определяется по отклонениям от трендов. Она может иметь место, если не учтено влияние существенного фактора или нескольких менее существенных факторов, но направленных «в одну сторону», либо неверно выбрана модель, устанавливающая связь между факторами и функцией. Для выявления наличия автокорреляции применяется критерий Дурбина-Уотсона. Для исключения или уменьшения автокорреляции применяется переход к случайной компоненте (исключение тренда) или введение времени в уравнение множественной регрессии в качестве аргумента.

В многофакторных моделях возникает проблема и мультиколлинеарности - наличие сильной корреляции между факторами, которая может существовать вне всякой зависимости между функцией и факторами. Выявив, какие факторы являются мультиколлинеарными, можно определить характер взаимозависимости между мультиколлинеарными элементами множества независимых переменных.

В многофакторном анализе необходимо наряду с оценкой параметров сглаживающей (исследуемой) функции построить прогноз каждого фактора (по неким другим функциям или моделям). Естественно, что значения факторов, полученные в эксперименте в базисном периоде, не совпадают с аналогичными значениями, найденными по прогнозирующим моделям для факторов. Это различие должно быть объяснено либо случайными отклонениями, величина которых выявлена указанными различиями и должна быть учтена сразу же при оценке параметров сглаживающей функции, либо это различие не случайно и никакого прогноза делать нельзя. То есть в задаче многофакторного прогнозирования исходные значения факторов, как и значения сглаживающей функции, должны быть взяты с соответствующими ошибками, закон распределения которых должен быть определен при соответствующем анализе, предшествующем процедуре прогнозирования.


24. Сущность и содержание ЭМ: структурной и развернутой

Эконометрические модели - это системы взаимосвязанных уравнений, многие параметры которых определяются методами статистической обработки данных. К настоящему времени за рубежом в аналитических и прогнозных целях разработаны и используются многие сотни эконометрических систем. Ма кроэконометрические модели, как правило, сначала представляются в естественной, содержательной форме, а затем в приведенном, структурном виде. Естественная форма эконометрических уравнений позволяет квалифицировать их содержательную сторону, дать оценку их экономического смысла.

Для построения прогнозов эндогенных переменных необходимо выразить текущие эндогенные переменные модели в виде явных функций предопределённых переменных. Последняя спецификация, полученная путем включения случайных возмущений получена в результате математической формализации экономических закономерностей. Такая форма спецификации называется структурной . В общем случае в структурной спецификации эндогенные переменные не выражены в явном виде через предопределенные.

В модели равновесного рынка только переменная предложениявыражена в явном виде через предопределенную переменную, поэтому для представления эндогенных переменных через предопределенные необходимо выполнить некоторые преобразования структурной формы. Решим систему уравнений для последний спецификации относительно эндогенных переменных.

Таким образом, эндогенные переменные модели выражены в явном виде через предопределенные переменные. Такая форма спецификации получила название приведенной. В частном случае структурная и приведённая фор­мы модели могут совпадать. При правильной спецификации модели пере­ход от структурной к приведённой форме всегда возможен, обратный переход возможен не всегда.

Система совместных, одновременных уравнений (или структурная форма модели) обычно содержит эндогенные и экзогенные переменные. Эндогенные переменные обозначены в приведенной ранее системе одновременных уравнений как у. Это зависимые переменные, число которых равно числу уравнений в системе. Экзогенные переменные обозначаются обычно как x. Это предопределенные переменные, влияющие на эндогенные переменные, но не зависящие от них.

Простейшая структурная форма модели имеет вид:

где y – эндогенные переменные; x – экзогенные переменные.

Классификация переменных на эндогенные и экзогенные зависит от теоретической концепции принятой модели. Экономические переменные могут выступать в одних моделях как эндогенные, а в других как экзогенные переменные. Внеэкономические переменные (например, климатические условия) входят в систему как экзогенные переменные. В качестве экзогенных переменных могут рассматриваться значения эндогенных переменных за предшествующий период времени (лаговые переменные).

Так, потребление текущего года (y t) может зависеть не только от ряда экономических факторов, но и от уровня потребления в предыдущем году (y t-1)

Структурная форма модели позволяет увидеть влияние изменений любой экзогенной переменной на значения эндогенной переменной. Целесообразно в качестве экзогенных переменных выбирать такие переменные, которые могут быть объектом регулирования. Меняя их и управляя ими, можно заранее иметь целевые значения эндогенных переменных.

Структурная форма модели в правой части содержит при эндогенных и экзогенных переменных коэффициенты b i и a j , (b i – коэффициент при эндогенной переменной, a j – коэффициент при экзогенной переменной), которые называются структурными коэффициентами модели. Все переменные в модели выражены в отклонения от уровня, т. е. под x подразумевается x- (а под y - соответственно у- (. Поэтому свободный член в каждом уравнении системы отсутствует.

Использование МНК для оценивания структурных коэффициентов модели дает, как принято считать в теории, смещенные структурных коэффициентов модели структурная коэффициентов модели структурная форма модели преобразуется в приведенную форму модели.

Приведенная форма модели представляет собой систему линейных функций эндогенных переменных от экзогенных:

По своему виду приведенная форма модели ничем не отличается от системы независимых уравнений, параметры которой оцениваются традиционным МНК. Применяя МНК, можно оценить δ , а затем оценить значения эндогенных переменных через экзогенные.

Развернутая ЭМ (ее блоки)

Трехмерные картографические изображения являются электронными картами более высокого уровня и представляют собой визуализированные на средствах компьютерных систем моделирования пространственные образы основных элементов и объектов местности. Они предназначены для использования в системах управления и навигации (наземной и воздушной) при анализе местности, решении расчетных задач и моделировании, проектировании инженерных сооружений, мониторинге окружающей среды.

Технология моделирования местности позволяет создавать наглядные и измеримые перспективные изображения, весьма похожие на реальную местность. Их включение по определенному сценарию в компьютерный фильм позволяет при его просмотре "увидеть" местность с разных точек съемки, в различных условиях освещенности, для различных времен года и суток (статическая модель) или "пролететь" над ней по заданным или произвольным траекториям движения и скорости полета - (динамическая модель).

Использование компьютерных средств, в состав которых входят векторные или растровые дисплеи, позволяющие осуществлять в своих буферных устройствах преобразование входной цифровой информации в заданный кадр, требует предварительного создания в качестве такой информации цифровых пространственных моделей местности (ПММ).

Цифровые ПММ по своей сущности представляют собой совокупность цифровых семантических, синтаксических и структурных данных, записанных на машинный носитель, предназначенных для воспроизведения (визуализации) объемных образов местности и топографических объектов в соответствии с заданными условиями наблюдения (обзора) земной поверхности.

Исходными данными для создания цифровых ПММ могут служить фотоснимки, картографические материалы, топографические и цифровые карты, планы городов и справочная информация, обеспечивающие получение данных о положении, форме, размерах, цвете, и назначении объектов. При этом полнота ПММ будет определяться информативностью используемых фотоснимков, а точность - точностью исходных картографических материалов.

Технические средства и методы создания ПММ

Разработка технических средств и методов создания цифровых ПММ является непростой научно-технической проблемой. Решение этой проблемы предполагает:

Разработку аппаратно-программных средств получения первичной трехмерной цифровой информации об объектах местности по фотоснимкам и картматериалам;
- создание системы трехмерных картографических условных знаков;
- разработку методов формирования цифровых ПММ с использованием первичной картографической цифровой информации и фотоснимков;
- разработку экспертной системы формирования содержания ПММ;
- разработку методов организации цифровых данных в банке ПММ и принципов построения банка ПММ.



Разработка аппаратно-программных средств получения первичной трехмерной цифровой информации об объектах местности по фотоснимкам и картматериалам обусловлена следующими принципиальными особенностями:

Более высокими, по сравнению с традиционными ЦКМ, требованиями к цифровым ПММ по полноте и точности;
- использованием в качестве исходных дешифровочных фотоснимков, получаемых кадровыми, панорамными, щелевыми и ПЗС съемочными системами и не предназначенных для получения точной измерительной информации об объектах местности.

Создание системы трехмерных картографических условных знаков является принципиально новой задачей современной цифровой картографии. Ее суть заключается в создании библиотеки условных знаков, близких к реальному изображению объектов местности.

Методы формирования цифровых ПММ с использованием первичной цифровой картографической информации и фотоснимков должны обеспечить, с одной стороны, оперативность их визуализации в буферных устройствах компьютерных систем, а, с другой стороны, требуемые полноту, точность и наглядность трехмерного изображения.

Исследования, выполняемые в настоящее время, показали, что для получения цифровых ПММ, в зависимости от состава исходных данных могут быть применимы методы, использующие:

Цифровую картографическую информацию;
- цифровую картографическую информацию и фотоснимки;
- фотоснимки.

Наиболее перспективными представляются методы , использующие цифровую картографическую информацию и фотоснимки. Основными из них могут быть методы создания цифровых ПММ различной полноты и точности: по фотоснимкам и ЦМР; по фотоснимкам и ЦКМ; по фотоснимкам и ЦММ.

Разработка экспертной системы формирования содержания ПММ должна обеспечить решение задач проектирования пространственных изображений путем отбора объектового состава, его обобщения и символизации и вывода на экран отображения в требуемой картографической проекции. При этом потребуется разработать методику описания не только условных знаков, но и пространственно-логических отношений между ними.

Решение задачи разработки методов организации цифровых данных в банке ПММ и принципов построения банка ПММ определяется спецификой пространственных изображений, форматами представления данных. Вполне возможно, что потребуется создавать пространственно-временной банк с четырехмерными моделированием (Х,У,Н,t), где будут генерироваться ПММ в режиме реального времени.

Технические и программные средства отображения и анализа ПММ

Второй проблемой является разработка технических и программных средств отображения и анализа цифровых ПММ. Решение данной проблемы предполагает:

Разработку технических средств отображения и анализа ПММ;
- разработку способов решения расчетных задач.

Разработка технических и программных средств отображения и анализа цифровых ПММ потребует использования существующих графических рабочих станций, для которых должно быть создано специальное программное обеспечение (СПО).

Разработка способов решения расчетных задач является прикладной задачей, возникающей в процессе использования цифровых ПММ в практических целях. Состав и содержание данных задач будут определяться конкретными потребителями ПММ.

Существует модель, которая связывает и согласовывает между собой два, на первый взгляд далекие друг от друга описания человека – психофизическое и Трансперсональное. Модель эта имеет многовековую историю и опирается на глубокий исследовательский и практический опыт, передающийся непосредственно от Учителя к Ученику. На языке Традиции, представителями которой являются авторы данной книги, модель эта носит название Объемно – Пространственная Модель, (которая неоднократно упоминалась уже в первых главах). Имеются некоторые параллели Объемно – Пространственной Модели с другими древними описаниями человека (системой Чакр – “тонких” тел; “энергетических центров” – “планов сознания” и др.). К сожалению, серьезное исследование этих моделей сейчас, в большинстве случаев, подменено распространенным вульгарным представлением о Чакрах, как о неких пространственно – локализованных образованиях, а о “тонких” телах, как о своеобразной “матрешке”, состоящей из каких-то невидимых невооруженным глазом сущностей. Авторам известно лишь сравнительно небольшое число современных трезвых исследований этого вопроса [см., например, Йог №20 “Вопросы Общей теории Чакр” СПб 1994.]

Сложившаяся ситуация крайне невыгодна: критически мыслящие специалисты настроены к модели Чакр и “тонких” тел скептически, прочие же (иногда несмотря даже на длительный опыт работы психологом или психотерапевтом) становятся в один ряд с домохозяйками (не в обиду им сказано), посещающими курсы “экстрасенсорики”, и пополняют армию носителей легенд о Чакрах и “Телах”, распространяемых популярными брошюрами. Дело доходит иногда до комического оборота. Так, одному из авторов данной книги довелось несколько лет назад присутствовать на психологическом тренинге, с элементами “эзотерики”, где весьма авторитетный ведущий давал примерно такую инструкцию к одному из упражнений: “... А теперь, вы своей эфирной рукой поставьте “якорь” прямо клиенту в нижнюю Чакру...”, что большинство присутствующих сразу с энтузиазмом попытались осуществить (конечно, не далее, чем в своем воображении).



Далее мы не будем упоминать Чакры и Тела, а будем пользоваться языком Объемов и Пространств. Не следует, однако, проводить однозначное соответствие между Объемами и Чакрами, Пространствами и Телами; несмотря на некоторое сходство, модели эти отличаются; отличия, в свою очередь, связаны не с претензией на большую или меньшую правильность, а с удобством для той Практики, которую мы представляем на страницах данной книги.

Вернемся еще раз к определениям Объемов и Пространств, которые мы давали в главах 1 и 2:

Итак, Объемы – это не части физического тела и не некие локализованные области. Каждый Объем – Целостное психофизическое состояние, образование, отражающее некоторую (конгруэнтную) совокупность определенных качеств организма, как целого. Если говорить на энергетическом языке, то Объем – определенный диапазон энергии, который, при фокусировке восприятия на физическом мире, проявляется в сочетании тканей, органов, участков нервной системы и т.д. В довольно упрощенном варианте можно для каждого Объема найти наиболее характерную функцию и задачу, которую он выполняет в организме. . Так, функции Копчикового Объема можно связать с задачей выживания во всех его формах (физического, социального, духовного), проявления, рождения, становления... Функции Мочеполового Объема ассоциируются с процветанием, изобилием, плодородием, развитием и преумножением, многообразием и достатком... Для Пупочного Объема основные задачи (читай – диапазон энергии) – упорядочивание, структурирование, управление и связывание. И так далее. Нас будут пока интересовать не конкретные функции Объемов. а общие механизмы работы с ними.

Каждое переживание, любой опыт воспринимается нами преимущественно через тот или иной Объем. Это относится к любому опыту – если мы хотим активизировать то или иное переживание, то возбуждается тот или иной Объем и мы начинаем воспринимать Мир “через него”. Применительно к психотерапевтической работе – когда терапевт обращается к какому-то переживанию клиента: “проблемному” или “ресурсному”, пытается работать с некой “частью личности”, он, тем самым, фокусирует сознание пациента в какой-то области того или иного Объема (кстати, мы кратко упомянули функции только трех нижних Объемов потому, что реальная продуктивная фокусировка внимания в верхних Объемах – явление незаурядное – тут не все так просто, как описано в книжках). То же относится и к Пространствам. Напомним, что Пространства – схемы восприятия, отражающие уровни “тонкости” восприятия. Один и тот же Объем на разных уровнях восприятия будет проявляться по-своему, сохраняя свои основные задачи. Так, например, Пупочный Объем в Пространстве Событий проявляется через ряд ситуаций, в которых человек что-то с чем-то связывает, упорядочивает, управляет и т.п., в Пространстве Имен – тот же Объем проявится через схематизацию. моделирование, приведение в порядок мыслей и взглядов на Мир, построение планов и т.д., в Пространстве Отражений весь эмоциональный спектр тоже будет окрашен соответствующими этому Объему задачами.

Объемно-Пространственную Модель организма человека можно условно представить в виде схемы (Рис.3.)

Рис.3. Объемно-Пространственная Модель.

На схеме (Рис.3.) наглядно видно, что каждое Пространство охватывает весь спектр энергии на определенном уровне “тонкости”, где каждый Объем – это “сектор”, выделяющий определенный энергетический диапазон.

Итак – Объемно-Пространственная Модель позволяет в Человеке и в Мире, которые воспринимаются, как динамические энергетические структуры, выделить различные качества энергии. В восприятии эти качества энергии проявляются через определенное сочетание самых разнообразных факторов:

физиологических процессов (механических, тепловых, химических, электродинамических), динамике нервных импульсов, активизации тех или иных модальностей, окраске эмоций и мышления, сочетании событий, переплетении судеб; попадании в соответствующие “внешние” условия: географические, климатические, социальные, политические, исторические, культурные...

Энергопотоки.

Схема, приведенная на Рис.3. дает нам энергетическую модель организма человека. С этой точки зрения, всю жизнь человека, как проявление, оформление этой энергии или как динамику само-восприятия, можно представить в виде движения-пульсации некого “узора” на схеме, где в каждый момент времени активизируются те или иные области энергетического спектра (Рис.4.).

Однако динамика само-восприятия и движения энергии не так уж произвольны и многообразны для обычного человека. Существуют области, в которых восприятие, так сказать, зафиксировано и довольно устойчиво, некоторые области спектра доступны только изредка и при особом стечении обстоятельств. Существуют области, практически недоступные для осознания в течении всей жизни (для каждого человека разные: для одного человека недоступно переживание смысла, другой за всю жизнь так и не пережил по-настоящему свое тело, третий не в состоянии пережить определенное качество эмоций, событий, мыслей и т.п.).

Наиболее вероятная траектория движения и фиксаций восприятия и осознания определяется Доминантой. Становится понятно, что для того, чтобы оторваться от этой наиболее вероятной траектории и устойчивых позиций восприятия, нужна некая добавочная энергия и, что самое важное, умение направить эту энергию в нужном направлении, так, чтобы она не попала в наработанное стереотипное русло.

t’
t”
t”’

Рис.4. Динамика восприятия во времени.

Этим и объясняется наличие труднодоступных и недоступных для восприятия и осознания диапазонов – обычно у человека нет этой добавочной энергии; лишь иногда она может высвободиться в результате каких-либо чрезвычайных, чаще всего стрессовых, обстоятельств, что позволит восприятию сместиться в ранее недоступный диапазон (такое внезапное смещение восприятия может привести к появлению у человека каких-то новых способностей, недоступных в обычном состоянии).

Если мы вернемся к понятию Целостность, то теперь можно рассмотреть его еще с одной стороны: Реализация Целостности – это реализация Индивидуальной Сферы, т.е. ситуация, когда восприятие может свободно перемещаться, охватывая все диапазоны энергии, не имея жестко фиксированных позиций и однозначно заданных траекторий.

Для более детального описания этой ситуации нам потребуется обратиться к понятию Энергопотока. Энергопоток – движение, развитие точечного импульса восприятия в Объемно-Пространственной энергосистеме. Можно сказать еще и так: Энергопоток – динамическое соединение различных областей в Индивидуальной Сфере по общему энергодиапазону (например по одной модальности).

“Находясь в непрерывном диалоге с Миром, человек (И.С.) откликается практически на все сигналы, приходящие “извне” движением Энергопотоков. Причем чувствительность И.С. значительно выше порога восприятия органов чувств. Соответственно существует множество неосознанных реакций.

Особенности личной деформации И.С. создают постоянные характерные индивидуальные Энергопотоки. То, что мы осознаем, как ощущения, эмоции, мысли, движения тела и превратности судьбы, память, проекции будущего, болезни, особенности культуры и мировоззрения – все это (и многое другое) движение Энергопотоков.”

Можно условно выделить конструктивные и деструктивные Энергопотоки. Конструктивный Э. – динамика восприятия, способствующая устранению деформаций из И.С. – жестких, доминирующих структур. Деструктивный Э. – динамика восприятия, способствующая возникновению новых или подкреплению имеющихся деформаций И.С.

В свою очередь, динамикой Энергопотоков мы будем называть многофакторный динамический процесс, переводящий восприятие человека из одного состояния в другое (пример динамики Энергопотоков изображен на Рис.5.).

В Целостном организме возможны любые Энергопотоки, для которых он (организм) абсолютно прозрачен и проницаем. Динамика Энергопотоков может, в таких случаях, переводить восприятие в любое положение. (Это эквивалентно тому, что мы назвали сквозным Осознанием в Главе 1.).

Динамика Энергопотоков – процесс многофакторный, т.к. любое состояние проявляется в виде сочетания большого числа факторов (например, определенных ощущений, характера движений. мимики, параметров голоса, тех или иных эмоций и т.п.). Динамика Энергопотоков переводит одно состояние в другое (точнее сказать – это процесс – непрерывная смена состояний) и, соответственно, могут меняться какие-то факторы и параметры, через которые Энергопотоки проявляются.

Рис.5. Пример динамики Энергопотоков, переводящей восприятие из состояния с жестко локализованной структурой (А)в более Целостное (Д), в пределах одного Пространства

Если теперь обратиться к психотерапии, то мы обнаружим следующее:

Пациент находится в некотором состоянии восприятия (определяемом его Доминантой), которое, очевидно, не Целостно, в его энергетике имеются жестко локализованные структуры, что не дает возможности сдвигать восприятие в другие положения. Для выхода из такой ситуации необходимо задать Энергопотоки, позволяющие сместиться в другое состояние, которое пациент будет воспринимать, как более позитивное. На этом психотерапия, обычно, заканчивается.

Если посмотреть с более общих позиций, то окажется, что не‑пациент или вылечившийся пациент по большому счету мало чем отличается от “больного”. Отличие только в том, что “больной” воспринимает свое состояние, как дискомфортное, а “здоровый”– как более – менеекомфортное и, может быть, имеющее больше степеней свободы. Однако, к Целостности это не имеет никакого отношения, т.к. и состояние “больного” и “здорового” это, как правило, все равно ограниченные, локализованные и задаваемые Доминантой фиксации восприятия.

Целостность подразумевает возможность самостоятель­ного задания любых Энергопотоков и переживания Мира то­тально, одномоментно всем организмом.

В предыдущей главе мы рассматривали модели, которые явля­ются статическим отражением систем в определенные моменты времени. В этом смысле рассмотренные варианты модели «черного ящика», модели состава и структурной модели называют статиче­скими моделями, что подчеркивает их неподвижность.

Следующий шаг в исследовании системы состоит в том, чтобы понять и описать, как система «работает», выполняя свое предна­значение. Такие модели должны описывать поведение системы, фиксировать изменения, происходящие с течением времени, улав­ливать причинно-следственные связи, адекватно отражать последо­вательность протекаемых в системе процессов и этапность ее разви­тия. Такого рода модели называют динамическими. При исследова­нии конкретной системы необходимо определить направление воз­можных изменений ситуации. Если такой перечень будет исчерпы­вающим, то он характеризует число степеней свободы, а значит, достаточен для описания состояния системы. Как оказалось, дина­мические модели делятся на такие же типы, как статические («чер­ного ящика», состава и «белого ящика»), только элементы этих мо­делей имеют временной характер.

2.4.1. Динамическая модель «черного ящика»

При математическом моделировании динамической системы ее конкретная реализация описывается в виде соответствия между возможными значениями некоторой интегральной характеристики системы с и моментами времени t. Если обозначить через С - множество возможных значений с, а через Т - упорядоченное множество моментов времени t, то построение модели динамиче­ской системы равносильно построению отображения

Г->С:с(t)ϵСͭͭ,

где Сͭ - значение интегральной характеристики в точке t ϵ .

В динамической модели «черного ящика» предполагается раз­биение входного потока х на две составляющие: и - управляемые входы, y - неуправляемые входы (рис 2.9).

Таким образом, она выражается совокупностью двух процессов:

Хͭ = {u(t), y(t)}; u(t)eU; y(f)eK;

Рис. 2.9. Динамическая модель «черного ящика»

предполагается, что это преобразование неизвестно.

Из данного типа моделей в наибольшей мере изучены так назы­ваемые безынерционные системы. Они не учитывают фактора време­ни и работают по схеме «если-то». Например: если воду нагреть до

100° С, то она закипит. Или: если вы правильно авторизовали свою кредитную карту, то банкомат вам сразу выдаст затребованную сумму денег. То есть следствие вступает в силу сразу за причиной.

Определение 1. Динамическая система называется безынерцион­ной, если она мгновенно преобразует вход в выход, т.е. если y(t)

является функцией только х(t) в тот же момент времени.

Поиск неизвестной функции у(/) = Ф(х(t)) осуществляется по­средством наблюдения входов и выходов исследуемой системы. По существу, эта задача о переходе от модели «черного ящика» к моде­ли «белого ящика» по наблюдениям входов и выходов при наличии информации о безынерционности системы.

Однако класс безынерционных систем весьма узок. В экономи­ке такие системы очень большая редкость. Разве только отдельные биржевые операции с некоторой натяжкой можно причислить к классу безинерционных.

При моделировании экономических систем необходимо пом­нить, что в них всегда присутствует задержка и, более того, следст­вие (результат) может проявиться совсем не в том месте, где его ожидали. Таким образом, имея дело с экономическими системами, нужно быть готовым к тому, что последствия могут отстоять от вы­звавшей их причины во времени и пространстве.

Например, если в фирме отдел сбыта пустит на самотек пред­продажное обслуживание и сконцентрирует все свои силы на про­дажах, пострадает отдел гарантийного обслуживания. Но это про­явится не сразу, а спустя определенное время. На лицо проявление следствия «не там и не в то время». Или: для изменения покупа­тельских пристрастий может потребоваться несколько недель рек­ламной кампании, и не обязательно ощутимые перемены начнутся сразу же после ее окончания.

Обратная связь действует по цепочке причинно-следственных связей, образующих замкнутый контур, и требуется время, чтобы его обойти. Чем большей динамической сложностью обладает сис­тема, тем больше нужно времени на то, чтобы сигнал обратной свя­зи пробежал по ее структуре (сети взаимосвязей). Достаточно одной задержки, чтобы обеспечить сильное запаздывание сигнала.

Определение 2. Время, необходимое для того, чтобы сигнал об­ратной связи прошел по всем звеньям системы и вернулся в исход­ную точку, называется памятью системы.

Не только живые системы имеют память. В экономике, напри­мер, это ярко демонстрирует процесс вывода на рынок нового то­вара. Как только на рынке появляется новый товар, пользующийся спросом, сразу находится много желающих его производить. Мно­гие фирмы запускают производство этого товара, и пока существует спрос, наращивают его объемы. Рынок постепенно насыщается, но производители пока этого не ощущают. Когда объем производства превысит некоторое критическое значение, спрос станет падать. Производство товара по определенной инерции еще некоторое вре­мя будет продолжаться. Начнется затоваривание складов готовой продукцией. Предложение сильно превысит спрос. Цена на товар упадет. Многие фирмы прекратят производство этого товара. И та­кая ситуация будет сохраняться до тех пор, пока предложение не упадет до таких значений, что не сможет покрыть существующий спрос. Рынок сразу уловит складывающийся дефицит и отреагирует повышением цены. После этого начнется оживление производства и новый цикл взлета-падения рынка. Так будет продолжаться до тех пор, пока на рынке не останутся несколько производителей, которые либо договорятся между собой, либо интуитивно нащупают квоты производства товара, суммарный объем которых будет соответство­вать требуемому соотношению спроса и предложения (рис. 2.10).




Точно так же выглядят графики инфляции и дефляции денеж­ного рынка, расцвета и крахов фондового рынка, пополнения и расходования семейного бюджета. Все дело в том, что причину и следствие разделяет задержка во времени. Все это время система «помнит» как она должна отреагировать на причину. На первых порах кажется, что и следствия-то никакого нет. Но со временем эффект проявляется. Введенные в заблуждение (в нашем примере предприниматели) слишком поздно и слишком сильно реагируют на пики спроса и предложения. А во всем виновата уравновеши­вающая обратная связь, работающая с задержкой во времени.

Рис. 2.11. Колебание рынка товара

В такой ситуации есть два решения. Во-первых, можно сделать более надежным измерение, осуществляя постоянный или перио­дический мониторинг рынка. Во-вторых, следует учитывать раз­ницу во времени и стремиться оказаться там где нужно к тому времени, когда сигнал обратной связи успеет пройти через все звенья системы. Когда понимаешь, как осуществляется процесс, появляется возможность изменить ситуацию в желательном на­правлении.

В очень сложных системах следствие может проявиться спустя очень длительное время. К тому времени, когда оно даст о себе знать, критический порог может миновать и будет уже поздно что- либо исправлять. Особенно наглядно такая опасность просматрива­ется во влиянии промышленных отходов на окружающую среду. То, что мы делаем сейчас, скажется на нашей будущей жизни, когда появятся последствия наших дел. Нашими сегодняшними поступ­ками мы формируем облик будущего.

В облике динамической модели «черного ящика», по существу, ничего не изменится, кроме того, что момент появления выхода у потребуется скорректировать на время задержки ∆, т.е. выход сис­темы примет вид y(t + ∆) (см. рис. 2.10). Однако основная труд­ность моделирования в том и заключается, чтобы определить вели­чину Д и место, в котором появится у. Наилучшим образом это удается в рамках построения так называемых лаговых моделей, кото­рые изучает математическая статистика.

2.4.2. Динамическая модель состава

В теории систем различают два вида динамики: функциониро­вание и развитие. Под функционированием подразумевают процессы, которые происходят в системе, стабильно реализующей фиксиро­ванную цель (функционирует предприятие, функционируют часы, функционирует городской транспорт и т.п.). Под развитием пони­мают изменение состояния системы, обусловленное внешними и внутренними причинами. Развитие, как правило, связывают с дви­жением систем в фазовом пространстве.

Исследованием функционирования экономических систем заня­ты специалисты в области экономического анализа. Исходную базу для этого исследования составляют данные бухгалтерского учета, статистической отчетности и статистических наблюдений. В боль­шинстве случаев задача экономического анализа решается аналити­ческими методами бухгалтерского учета или сводится к построению и реализации корреляционно-регрессионных моделей. Богатейший инструментарий экономического анализа изучается в рамках ряда дисциплин цикла «Бухгалтерский учет и статистика».

Развитие в большинстве случаев обусловлено изменением внешних целей системы. Характерной чертой развития является то, что существующая структура перестает соответствовать новым це­лям и для обеспечения необходимого соответствия приходится из­менять структуру системы, т.е. осуществлять ее реорганизацию. Экономические системы (предприятия, организации, корпоратив­ные образования) в условиях рыночной экономики для выживания в конкурентной борьбе должны постоянно находиться в фазе разви­тия. Только постоянное обновление ассортимента выпускаемой продукции или оказываемых услуг, совершенствование технологии производства и методов управления, повышение квалификации и образованности персонала могут обеспечить экономической систе­ме определенные конкурентные преимущества и расширенное вос­производство.

В данном параграфе, не отрицая значимости фазы функциони­рования системы, большей частью будем вести речь о фазе ее раз­вития, хотя при расширенном толковании функционирования сис­темы как движения к намеченной цели (плану) приведенные ниже рассуждения вполне применимы к моделированию фазы функцио­нирования системы.

Динамическому варианту модели состава соответствует перечень этапов развития или состояний системы на моделируемом интерва­ле времени. Под состоянием системы будем понимать такую сово­купность параметров, характеризующих пространственное положе­ние системы, которая исчерпывающе определяет ее текущее позирование.

Фиксация состояния определяется посредством введения раз­личных переменных, каждая из которых отражает какую-то одну существенную сторону исследуемой системы. В данном случае важ­на исчерпываемость описания для раскрытия того назначения сис­темы, которое подвергается исследованию в рамках данной модели.

Наиболее наглядно состояние системы определяется через сте­пени свободы. Это понятие введено в механике и означает число независимых координат, однозначно описывающих положение сис­темы. Так, твердое тело в механике есть система с шестью степеня­ми свободы: три линейные координаты фиксируют положение цен­тра масс, а три угловые - положение тела относительно центра масс.

В экономических исследованиях каждую координату (степень свободы) связывают с определенным показателем (количественно измеряемой характеристикой системы). Ключевая задача при этом заключается в том, чтобы обеспечить независимость показателей, отобранных для построения модели системы. Поэтому необходимо глубоко понимать природу экономических явлений и отражающих их показателей, чтобы правильно сформировать базис для построе­ния модели состава экономической системы.


Развитие системы есть не привычное перемещение, а некоторая абстракция, описывающая изменение ее состояния. Таким образом, динамические свойства объекта характеризуются через изменение параметров состояния во времени. На рис. 2.12 приведено графиче­ское отображение движения системы в трехмерном пространстве (в теории систем такое пространство называют пространством состоя­ний, или фазовым пространством).

Рис. 2.12. Траектория развития системы

Тогда состояние системы в момент времени ts описывается вектором Cs = (C1s,C2s,C3s). Аналогично описываются ее началь­ное Сн и конечное Ск состояния, а изменения в системе отобра­жаются некоторой кривой - траекторией развития. Каждая точка этой кривой фиксирует состояние системы в определенный момент времени. Тогда движение системы эквивалентно перемещению точ­ки по траектории С2.

Экстраполируя это описание на случай и независимых коорди­нат и помня, что каждая координата (параметр) зависит от времени t, развитие системы можно описать совокупностью функций с1= с1(t), с2=с2(t) ,..., сn =сn(t), или вектором (с1(t), с2 (t),...,сn =сn(t)), принадлежащим пространству состояний С.

Таким образом, динамическая модель состава системы это не что иное, как упорядоченная последовательность ее состояний, по­следнее из которых эквивалентно цели системы, т.е.

Сн =С0 ->СJ ->Ct ->...->СT=Ск,

где Сн - начальное;

Ск - конечное;

С, = (c1 (t), c2 (t),..., сn (t)), t ϵ - текущее состояние системы.

Случай, когда строго определены граничные состояния систе­мы, относится к категории простейших, так как далеко не всегда удается описать состояние конкретными значениями. Более общей является ситуация, когда на начальное и конечное состояния сис­темы накладываются некоторые условия. Каждое из условий в про­странстве состояний представляется некоторой поверхностью или областью, размерность которой не должна быть больше числа сте­пеней свободы системы. Тогда вектор состояния системы в гранич­ные моменты времени должен находиться на заданной поверхности или в заданной области, что и будет означать выполнение условий.

2.4.3. Динамическая структурная модель

В динамических системах элементы могут вступать в самые раз­нообразные отношения между собой. А поскольку каждый из них способен пребывать во множестве различных состояний, то даже при небольшом числе элементов они могут быть соединены множе­ством различных способов. Построить модель такой системы, пре­дусмотрев изменение состояний одних элементов системы в зави­симости от того, что происходит с другими ее элементами, - очень непростая задача. Тем не менее современная наука выработала не­мало подходов к моделированию такого рода систем. На двух из них, которые стали классическими, остановимся подробнее.

Как и в случае статической структурной модели, динамическая структурная модель представляет собой симбиоз динамической мо­дели «черного ящика» и динамической модели состава. Другими словами, динамическая структурная модель должна увязать в еди­ное целое вход в систему X = {х(t)} = {u(t),v(t)}, u(t)ϵu, v(t)ϵV, промежуточные состояния

Ct = , t ϵ, и выход y={y(t)},

где, U - множество управляемых входов u(t);

U - множество неуправляемых входов v(t);

X = U U X - множество всех входов в систему;

Т - горизонт моделирования системы;

С, - промежуточное состояние системы в момент време­ни t ϵ .

В зависимости от того, отображаются промежуточные состояния системы строго определенной упорядоченной последовательностью

Сt (t = 0,1, 2, ..., Т) или одной неопределенной функцией Ct = Ф(t, хt), в результате моделирования получают либо динамическую струк­турную модель сетевого типа, либо динамическую структурную мо­дель аналитического типа.

Сетевые динамические модели. В динамической структурной мо­дели сетевого типа для каждой пары соседних состояний системы Сt-1 и Сt (t ϵ ) задается управляющее воздействие u(t), которое переводит систему из состояния Ct-l в состояние Ct. При этом оче­видно, что u(t) на каждом шаге траектории может принимать зна­чения из некоторого множества допустимых управляющих воздей­ствий на этом шаге

Ut: u(t)ϵUt. (2.1)

Таким образом, промежуточное состояние системы в некоторой точке t траектории ее развития записывается следующим образом

Сt=F(Ct-i,u(t)), t ϵ.

Обозначим через Ct множество всех состояний системы, в ко­торое можно ее перевести из начального состояния C0=CH за t ша­гов, используя управляющие воздействия u(t) ϵ Ut (t = 0,1, 2,..., t). Множество достижимости Сt определяется с помощью следующих рекуррентных соотношений:

Сt = {Ct: Сt = ƒ(Сt-1, и(t); и(t ϵUt; t = 0,1, 2,...,t}.

В задании на дальнейшее развитие или первоначальную разра­ботку системы указывается перечень допустимых ее конечных со­стояний, которые должны принадлежать некоторой области

СtϵС-Т. (2.2)

Управление U =(u(1), u(2),..., u{t),..., и(Т)) , состоящее из пошаговых управляющих воздействий, будет допустимым, если оно переводит систему из начального состояния Сн = С0 в конечное состояние Ск =СT , удовлетворяющее условию (2.2).

Выведем условия допустимости управления. Для этого рассмотрим последний Т-й шаг. В силу ограниченности множества UT перевести систему в состояние СT ϵ СT можно не из любого состоя­ния CT-1, а лишь из-T-1,Ст-1 G с,

Где, С - множество, удовлетворяющее условию

VCT=1 ϵ C-T-1зu(T)ϵUT: су =/(СУ-1, и(Т))&ст.

Иными словами, чтобы иметь возможность после Т-то шага-г управления выйти в область допустимых состояний С, необходимо-г-1 после (Г - 1) шагов находиться в области С.

Аналогичные множества допустимых состояний с" формируют­ся для всех остальных шагов t = 1, Т - 1.

Для достижения цели построения (развития) системы необхо­димо выполнение условий

С"ПС"*0, / = 1,Т. (2.3)

В противном случае цель системы не может быть достигнута. Для преодоления этого препятствия потребуется либо изменить-T цель системы, изменив тем самым С, либо расширить область возможных управляющих воздействий ut = 1,Т (в первую очередь на тех шагах траектории системы, на которых не выполняется усло­вие 2.3).

Пусть в результате преодоления (t -1) шагов система перешла в состояние Ct-1. Тогда множество допустимых управляющих воздей­ствий на t-м шаге определяется следующим образом:

U(t) = {u(t): Сt =ƒ(Сt-1, u(t) ϵс-t}. (2.4)

Объединяя (2.1) и (2.4), можно записать условия управляемого целенаправленного развития системы:

U(t)ϵ(t)nU(f) = 1д. (2.5)

Условия (2.5) означают, что управление должно быть возможным по его реализуемости и допустимым по обеспечению выхода системы в заданную область конечных состояний.

Таким образом, построение динамической структурной модели системы сетевого типа заключается в формализованном описании траектории ее развития путем задания промежуточных состояний системы и управляющих воздействий, последовательно переводя­ щих систему из начального состояния в конечное, соответствующее цели ее развития.

Поскольку из «начала» в «конец», как правило, существует множество путей, определение траектории развития системы можно вести по различным критериям (минимуму времени, максимуму эффекта, минимуму затрат и т.п.). Выбор критерия определяется целью моделирования системы.

Такой подход к моделированию динамических систем, как пра­вило, приводит к построению сетевых моделей разных типов (сете­вым графикам, технологическим сетям, сетям Петри и т.п.). Неза­висимо от типа сетевой модели их сущность заключается в том, что они описывают некоторую совокупность логически увязанных ра­бот, выполнение которых должно обеспечить построение некоторой системы (предприятия, дороги, политической партии) или перевода ее в другое состояние, соответствующее новым целям и требовани­ям времени.

Конкретизация динамических систем на этом, конечно, не за­канчивается. Приведенные модели, скорее всего, являются отдель­ными примерами реальных систем. В классе моделей динамических систем различают еще стационарные модели, мягкие и жесткие мо­дели, которые находят применение при исследовании конкретных прикладных проблем.

Контрольные вопросы

1. Приведите несколько определений системы и содержательную характеристику каждого из них.

2. В чем заключается разница между философской категорией и естественно-научным понятием?

3. Перечислите и проинтерпретируйте основные свойства системы.

4. Что такое эмерджентность системы?

5. Как соотносятся понятия «целостность» и «эмерджентность»?

6. В чем заключается сущность редукционизма? Чем он отличается от системного подхода?

7. В чем заключается разница между внешними и внутренними связями системы?

8. Какое свойство лежит в основе деления систем на открытые и закрытые (замкнутые)?

9. Приведите примеры закрытых экономических систем.

10. С помощью чего обеспечивается устойчивость системы?

11. В чем заключаются внутренняя и внешняя цели системы?

12. Как согласуются внутренняя и внешняя стратегии системы?

13. Как установить границы экономической системы?

14. Назовите причину неудовлетворительности прогнозов, получаемых в результате эконометрического моделирования.

15. Охарактеризуйте транзакционную среду экономической системы.

16. За счет чего открытые экономические системы сохраняют свои индивидуальные особенности?

17. Как (в каких шкалах) измеряются эмерджентные свойства сис-тем?

18. Назовите необходимое условие существования эмерджентного свойства системы.

19. В чем заключается сущность свойства целеустремленности. Как это свойство проявляется в экономических системах?

20. Приведите примеры реактивных, ответных, самонастраиваемых и активных экономических систем.

21. В чем заключается сущность свойства иерархичности экономических систем?

22. Эквивалентны ли понятия «уровень иерархии» и «страта»?

23. В чем заключается сущность свойства многомерности экономической системы?

24. Дайте системное определение понятию «компромисс».

25. Приведите практические примеры использования свойства многомерности при исследовании экономических систем.

26. В чем заключается сущность свойства множественности экономической системы?

27. Приведите примеры множественности функций экономической системы.

28. Как проявляется множественность структуры экономической системы?

29. Приведите примеры эквифинальности и мультифинальности экономических систем.

30. Перечислите причины контринтуитивного поведения экономи-ческих систем.

31. Какой классификационный признак положен в основу первич-ной классификации систем?

32. Назовите основные характеристики естественных систем. При-ведите примеры.

33. Назовите основные характеристики искусственных систем. Приведите примеры.

34. В чем заключается специфика социокультурных систем?

35. К какому классу первичных систем относятся экономические системы?

36. В какой мере естественные, технические и гуманитарные науки привлекаются к анализу экономических систем?

37. Разместите факторы в порядке убывания влияния на конфигурацию системы: внешняя среда, внутренние связи системы, связи системы с внешней средой, элементы системы.

38. Поясните, каким образом моральные ценности лица, принимающего решения, материализуются в реальной экономической системе.

39. Что представляет собой среда, в которой существуют и функционируют экономические системы?

40. Дайте определение экономической системы.

41. Какие классификационные признаки положены в основу пространственно-временной классификации экономических систем?

Пространственное объединение отдельных элементов технического объекта широко распространенная задача проектирования в любой отрасли техники: радиоэлектроники, машиностроения, энергети­ки и т. д. Значительную частью пространственного моделирования доставляет визуализация отдельных элементов и технического объекта в целом Большой интерес представляют вопросы построения базы данных графических трехмер­ных моделей элементов, алгоритмы и программная реализация графи­ческих приложений для решения данной задачи.

Построение моделей элементов носит универсальный характер и может рассматриваться как инвариантная часть многих систем пространственного моделирования и автоматизированного проектирования технических объектов.

Независимо от возможностей используемой графической среды по характеру формирования графических моделей можно выделить три группы элементов:

1.Уникальные элементы, конфигурация и размеры которых не повторяются в других аналогичных деталях.

2.Унифицированные элементы, включающие некоторый набор Фрагментов конфигураций, характерных для деталей данного класса. Как правило, существует ограниченный ряд типоразмеров унифицированного элемента.

3.Составные элементы, включающие как уникальные, так и унифицированные элементы в произвольном наборе. Используемые графические средства могут допускать некоторую вложенность составных элементов.

Пространственное моделирование уникальных элементов не представляет большой сложности. Прямое формирование конфигурации модели выполняется в интерактивном режиме, после чего программ­ная реализация оформляется на основе протокола формирования мо­дели или текстового описания полученного элемента.

2.Поочередный выбор фрагментов пространственной конфигурации и определение их размеров;

3.Привязка графической модели элемента к прочим элемента, технического объекта или системы;

4.Ввод дополнительной информации о моделируемом элементе

Данный подход формирования моделей унифицированных элементов обеспечивает надежную программную реализацию.

Модель составных элементов состоит из совокупности модели как уникальных, так и унифицированных элементов. Процедурно модель составного элемента строится аналогично модели унифицированного элемента, в которой в качестве графических фрагменте: выступают готовые модели элементов. Основными особенностями являются способ взаимной привязки включаемых моделей и механик объединения отдельных фрагментов в составной элемент. Последнее определяется, главным образом, возможностями инструментальных графических средств.

Интеграция графической среды и системы управления базами данных (СУБД) технической информации обеспечивает открытость системы моделирования для решения других задач проектирования: предварительные конструкторские расчеты, подбор элементной базы, оформление конструкторской документации (текстовой и графической) и др. Структура баз данных (БД) определяется как требованиями графических моделей так и информационными потребностями сопутствующих задач. В качестве инструментальных средств возможно использовать любую СУБД, сопрягаемую с графической средой. Наиболее общий характер носит построение моделей унифицированных элементов. На первом этапе в результате систематизации номенклатуры элементов, однотипных по назначению и составу гра­фических фрагментов, формируется гипотетический или выбирается существующий образец моделируемого элемента, обладающий полным набором моделируемых частей объекта.

    Методы интерполяции по дискретно расположенным точкам.

Общая задача интерполяции по точкам формулируется так: дан ряд точек (узлов интерполяции), положение и значения характеристик в которых известны, необходимо определить значения характеристик для других точек, для которых известно только положение. При этом различают методы глобальной и локальной интерполяции, и среди них точные и аппроксимирующие.

При глобальной интерполяции для всей территории одновременно используется единая функция вычисления z = F(x,y) . В этом случае изменение одного значения (х, у) на входе сказывается на всей результирующей ЦМР. При локальной интерполяции многократно применяют алгоритм вычисления для некоторых выборок из общего набора точек, как правило, близко расположенных. Тогда изменение выбора точек сказывается лишь на результатах обработки небольшого участка территории. Алгоритмы глобальной интерполяции создают сглаженные поверхности с небольшим числом резких перепадов; они применяются в случаях, если предположительно известна форма поверхности, например тренд. При включении в процесс локальной интерполяции большой доли общего набора данных она, по сути, становится глобальной.

    Точные методы интерполяции.

Точные методы интерполяции воспроизводят данные в точках (узлах), на которых базируется интерполяция, и поверхность проходит через все точки с известными значениями. анализ соседства, в котором все значения моделируемых характеристик принимаются равными значениям в ближайшей известной точке. В результате образуются полигоны Тиссена с резкой сменой значений на границах. Такой метод применяется в экологических исследованиях, при оценке зон воздействия, и больше подходит для номинальных данных.

В методе В-сплайнов строят кусочно-линейный полином, позволяющий создать серию отрезков, которые в конечном итоге образуют поверхность с непрерывными первой и второй производными. Метод обеспечивает непрерывность высот, уклонов, кривизны. Результирующая ЦМР имеет растровую форму. Этот метод локальной интерполяции применяется, главным образом, для плавных поверхностей и не годится для поверхностей с отчетливо выраженными изменениями - это приводит к резким колебаниям сплайна. Он широко используется в программах интерполяции поверхностей общего назначения и сглаживания изолиний при их рисовке.

В TIN-моделях поверхность в пределах каждого треугольника обычно представляется плоскостью. Поскольку для каждого треугольника она задается высотами трех его вершин, то в общей мозаичной поверхности треугольники для смежных участков точно прилегают по сторонам: образуемая поверхность непрерывна. Однако, если на поверхности проведены горизонтали, то в этом случае они будут прямолинейны и параллельны в пределах треугольников, а на границах будет происходить резкое изменение их направления. Поэтому для некоторых приложений TIN в пределах каждого треугольника строится математическая поверхность, характеризующаяся плавным изменением углов наклона на границах треугольников. Анализ трендов. Поверхность аппроксимируется многочленом и структура выходных данных имеет вид алгебраической функции, которую можно использовать для расчета значений в точках растра или в любой точке поверхности. Линейное уравнение, например, z = а + b х + су описывает наклонную плоскую поверхность, а квадратичное z = а + b х + су + dx 2 + еху + fy 2 -простой холм или долину. Вообще говоря, любое сечение поверхности т-го порядка имеет не более (т – 1) чередующихся максимумов и минимумов. Например, кубическая поверхность может иметь в любом сечении один максимум и один минимум. Возможны значительные краевые эффекты, поскольку полиномиальная модель дает выпуклую поверхность.

Методы скользящего среднего и среднего взвешенного по расстоянию используются наиболее широко, особенно для моделирования плавно меняющихся поверхностей. Интерполированные значения представляют собой среднюю величину значений для п известных точек, либо среднее, полученное по интерполируемым точкам, и в общем случае обычно представляются формулой

    Аппроксимационные методы интерполяции.

Аппроксимационные методы интерполяции применяются в тех случаях, когда имеется некоторая неопределенность в отношении имеющихся данных о поверхности; в их основе лежит соображение о том, что во многих наборах данных отображается медленно изменяющийся тренд поверхности, на который накладываются местные, быстро меняющиеся отклонения, приводящие к неточностям или ошибкам в данных. В таких случаях сглаживание за счет аппроксимации поверхности позволяет уменьшить влияние ошибочных данных на характер результирующей поверхности.

    Методы интерполяции по ареалам.

Интерполяция по ареалам заключается в переносе данных с одного исходного набора ареалов (ключевого) на другой набор (целевой) и часто применяется при районировании территории. Если целевые ареалы представляют собой группировку ключевых ареалов, сделать это просто. Трудности возникают, если границы целевых ареалов не связаны с исходными ключевыми.

Рассмотрим два варианта интерполяции по ареалам: в первом из них в результате интерполяции суммарное значение интерполируемого показателя (например, численности населения) целевых ареалов в полном объеме не сохраняется, во втором - сохраняется.

Представим, что имеются данные о численности населения для некоторых районов с заданными границами, и их нужно распространить на более мелкую сетку районирования, границы которой в общем не совпадают с первой.

Методика заключается в следующем. Для каждого исходного района (ключевого ареала) рассчитывают плотность населения путем деления общего количества проживающих на площадь участка и присваивают полученное значение центральной точке (центроиду). На основе этого набора точек с помощью одного из методов, описанных выше, интерполируется регулярная сетка, для каждой ячейки сети определяется численность населения путем умножения рассчитанной плотности на площадь ячейки. Интерполированная сетка накладывается на итоговую карту, значения по каждой ячейке относятся к границам соответствующего целевого ареала. Затем рассчитывается общая численность населения каждого из итоговых районов.

К недостаткам метода можно отнести не совсем четкую определенность выбора центральной точки; методы интерполяции по точкам неадекватны, и что важнее всего - не сохраняется суммарная величина интерполируемого показателя ключевых ареалов (в данном случае общей численности населения зон переписи). Например, если исходная зона разделена на две целевые, то общее количество населения в них после интерполяции не обязательно будет равно численности населения исходной зоны.

Во втором варианте интерполяции применяют способы ГИС-технологии оверлея или построения гладкой поверхности, основанного на так называемой адаптивной интерполяции.

В первом способе осуществляют наложение ключевых и целевых ареалов, определяют долю каждого из исходных ареалов в составе целевых, величины показателя каждого исходного ареала делят пропорционально площадям его участков в разных целевых ареалах. Считается, что плотность показателя в пределах каждого ареала одинакова, например, если показатель - это общее население ареала, то плотность населения считается для него постоянной величиной.

Целью второго способа является создание гладкой поверхности без уступов (значения атрибутов не должны резко изменяться на границах ареалов) и сохранение суммарной величины показателя в пределах каждого ареала. Методика его такова. На картограмму, представляющую ключевые ареалы, накладывают густой растр, общее значение показателя для каждого ареала поровну делится между ячейками растра, перекрывающими ее, значения сглаживают путем замены величины для каждой ячейки растра средним по окрестности (по окну 2×2, 3×3, 5×5) и суммируют значения для всех ячеек каждого ареала. Далее значения для всех ячеек корректируют пропорционально так, чтобы общее значение показателя для ареала совпадало с исходным (например, если сумма меньше исходного значения на 10%, значения для каждой ячейки увеличиваются на 10%). Процесс повторяют до тех пор, пока не. прекратятся изменения.

Для описанного метода однородность в пределах ареалов необязательна, но слишком сильные вариации показателя в их пределах могут отразиться на качестве интерполяции.

Результаты могут быть представлены на карте горизонталями или непрерывными полутонами.

Применение метода требует задания некоторых граничных условий, так как по периферии исходных ареалов элементы растра могут выходить за пределы области изучения или соседствовать с ареалами, не имеющими значения интерполируемого показателя. Можно, например, присвоить плотности населения значение 0 (озеро и т. п.) или принять ее равной значениям самых дальних от центра ячеек области изучения.

При интерполяции по ареалам могут возникнуть весьма сложные случаи, например, когда нужно создать карту, показывающую «ареалы расселения», на основе данных о населении отдельных городов, особенно если эти ареалы в масштабе карты показываются точкой. Проблема возникает и для небольших исходных ареалов, когда отсутствуют файлы границ, а в данных указывается только положение центральной точки. Здесь возможны разные подходы: замена точек, к которым приписаны данные, на круги, радиус которых оценивается по расстояниям до соседних центроидов; определение пороговой плотности населения для отнесения территории к городской; распределение населения каждого города по его территории так, что в центре плотность населения выше, а к окраинам уменьшается; по точкам с пороговым значением показателя проводят линии, ограничивающие заселенные территории.

Часто попытка создать непрерывную поверхность с помощью интерполяции по ареалам по данным, приуроченным только к точкам, приводит к неправильным результатам.

Пользователь обычно оценивает успешность применения метода субъективно и, главным образом, визуально. До сих пор многие исследователи используют ручную интерполяцию или интерполяцию «на глазок» (этот метод обычно невысоко оценивается географами и картографами, однако широко используется геологами). В настоящее время предпринимаются попытки «извлечь» познания экспертов с помощью методов создания баз знаний и ввести их в экспертную систему, осуществляющую интерполяцию.