Домой / Социальные сети / Система идентификации лиц. Биометрическая идентификация в интегрированных системах безопасности. Распознавание по клавиатурному почерку

Система идентификации лиц. Биометрическая идентификация в интегрированных системах безопасности. Распознавание по клавиатурному почерку

Сегодня на рынке представлены сразу несколько типов подобных систем и выполняют они разные по уровню сложности задачи: от дистанционного распознавания в толпе до учета рабочего времени в офисе. Решения для распознавания лиц доступны заказчикам на разных платформах – это серверная архитектура, мобильные и встраиваемые решения и облачные сервисы.

Современные системы работают на нейросетевых алгоритмах глубокого обучения, поэтому точность распознавания максимальная даже для изображений низкого качества, они устойчивы к поворотам головы и обладают другими преимуществами.

Пример 1. Общественная безопасность

Обеспечение безопасности – это своего рода отправная точка, с которой началось внедрение систем биометрической идентификации. Системы дистанционного распознавания лиц применяются для обеспечения безопасности объектов массового нахождения людей.

Самая сложная задача – идентификация человека в толпе.

Так называемое некооперативное распознавание, когда человек не взаимодействует с системой, не смотрит в объектив камеры, отворачивается или пытается скрыть лицо. Например, на транспортно-пересадочных узлах, метро, крупных международных мероприятиях.

Кейсы

Одним из самых значимых проектов 2017 для нашей компании стала крупнейшая международная выставка EXPO-2017, проходившая в Казахстане этим летом. В системе дистанционного биометрического распознавания лиц применялись специализированные камеры.

Выделение лиц в кадре происходит в самой камере и на сервер передается только изображение лица, это разгружает канал и существенно снижает затраты на сетевую инфраструктуру. Камеры контролировали четыре входные группы, в разных частях комплекса. Архитектура системы была разработана таким образом, что входные группы работали по отдельности или все вместе, при этом корректная работа системы обеспечивалась всего 4 серверами и 48 камерами.

С помощью видеоаналитики в режиме онлайн на крупных территориально-распределенных объектах ищут подозреваемых, пропавших людей, расследуют происшествия и инциденты, ведут анализ пассажиропотоков.

В некоторых аэропортах до конца 2017 года биометрия начнет применяться и для регистрации пассажиров на рейс. По данным портала Tadviser , системы «умных гейтов» в аэропортах планируют также внедрить 12 европейских стран (Испания, Франция, Нидерланды, Германия, Финляндия, Швеция, Эстония, Венгрия, Греция, Италия, Румыния).

А следующим шагом должно стать внедрение систем распознавания лиц для прохождения пограничного и миграционного контроля. При государственной поддержке внедрение идентификации по лицу может стать такой же обыденностью, как рамки металлодетекторов в перспективе ближайших трех-пяти лет.

Пример 2. Знать своего покупателя в лицо

Бизнес тоже делает ставку на биометрическую идентификацию по лицу. В первую очередь, это розничная торговля.

Системы распознают пол и возраст покупателей, частоту и время посещения торговых точек, аккумулируют статистику по каждому отдельному магазину сети.

После этого для отдела в автоматическом режиме выводятся подробные отчеты как в целом по сети, так и с разбивкой по торговым точкам. На основе этих отчетов удобно составлять «портрет клиента», планировать эффективные маркетинговые кампании.

К сожалению, мы не можем разглашать заказчиков. В их числе крупнейшие ритейлеры и DIY (Do It Youself) сети, в ассортименте которых присутствует дорогой инструмент и комплектующие.

Как это работает

Многие опасаются утечек конфиденциальной информации, но мы особо подчеркиваем, что никакие личные данные распознанных людей не хранятся в архивах. Более того, хранится даже не изображение, а его биометрический шаблон, по которому изображение не восстановить.

При повторных визитах «подтягивается» биометрический шаблон лица, поэтому система точно знает, кто и сколько раз был в магазине. За сохранность личных данных можно быть спокойным.

Для небольших магазинов, автосалонов, аптек механизм сбора маркетинговой аналитики реализован в облачном сервисе распознавания. Для предприятий малого и среднего бизнеса такой вариант является более предпочтительным, поскольку не требует затрат на серверное оборудование, найм дополнительного персонала, обновление софта и так далее Это, во-первых, удобный инструмент для оценки эффективности торговых точек, а во-вторых, отличный помощник для выявления воров. То есть одна система выполняет сразу несколько функций.

Пример 3. Системы контроля и управления доступом

Помимо вышеперечисленных функций, систему распознавания лиц удобно применять как альтернативу Proximity-картам в системах контроля и управления доступом (СКУД).

Они имеют ряд преимуществ: обеспечивают высокую достоверность распознавания, их невозможно обмануть, скопировать или украсть идентификатор, их легко интегрировать с существующим охранным оборудованием. Можно даже использовать уже имеющиеся камеры наблюдения. Системы биометрической идентификации лиц работают дистанционно и очень быстро с фиксированием событий в архиве.

На базе биометрической СКУД удобно вести учет рабочего времени сотрудников, особенно в крупных офисных центрах.

Кейс

Мы внедрили такую систему на крупном индийском предприятии, которое специализируется в сфере логистики в прошлом году. Число постоянных сотрудников – более 600 человек. При этом компания работает в круглосуточном режиме и практикует «плавающий» трудовой график. С помощью нашей системы дистанционной биометрической идентификации заказчик получил полный и достоверный учет рабочего времени сотрудников, инструмент превентивной безопасности объекта и СКУД.

Пример 4. Пропуск болельщика на стадион

В момент покупки билета в кассах лицо каждого покупателя автоматически фотографируется и подгружается в систему. Так формируется база посетителей матча. Если покупка была через интернет или мобильное приложение, то авторизация возможна удаленно с помощью «селфи». В дальнейшем, когда человек придет на стадион, система его распознает без всяких паспортов.

Идентификация посетителей спортивных соревнований стала обязательной согласно Федеральному закону № 284-ФЗ «О внесении изменений в статью 20 Федерального закона «О физической культуре и спорте в Российской Федерации» и статьи 32.14 Кодекса Российской Федерации об административных правонарушениях.

На стадион пройдет именно тот, кто купил билет, передать билет другому лицу или пройти по поддельному билету невозможно. Дистанционное распознавание лиц на стадионах работает по такому же принципу, как на крупных территориально-распределенных транспортных объектах: если человек внесен в списки лиц, которым доступ на стадион запрещен, система его не пропустит.

Кейс

В марте 2016 года в рамках совместного проекта Вокорда и Ханты-Мансийского филиала ПАО «Ростелеком» система дистанционного распознавания лиц применялась для обеспечения безопасности Кубка мира по биатлону, проходившего в Ханты-Мансийске. С 2015 года такая же система успешно работает в многофункциональном спортивном комплексе «Арена Омск». Он входит в шестерку самых больших спортивных сооружений России, является крупнейшим спортивно-развлекательным объектом Сибири и базой хоккейного клуба «Авангард».

Пример 5. Интернет-банкинг и банкоматы

Еще одной нишей, в которой обосновалось распознавание лиц, является банковская сфера. Здесь внедрение новых технологий проходит интенсивно, поскольку финансовый сектор больше других заинтересован в достоверности и сохранности персонифицированной информации.

Сегодня биометрия постепенно начинает, если не вытеснять привычные и устоявшиеся «бумажные» документы, то идти с ними вровень. При этом существенно повышается степень защиты при проведении платежей: для подтверждения транзакции достаточно посмотреть в камеру своего смартфона. При этом сами биометрические данные никуда не передаются, соответственно, перехватить их невозможно.

Внедрение технологий биометрической идентификации напрямую связано с массовым использованием электронных сервисов и устройств, развитием интернет-торговли и распространением пластиковых карт взамен наличных денег.

С появлением высокопроизводительных графических процессоров (GPU) и сверхкомпактных аппаратных платформ на их базе – таким как NVIDIA Jetson – распознавание лиц начало внедряться в банкоматы. Теперь снять наличные или провести операции по счету может только владелец карты, например, через банкоматы Тинькофф-банка . А PIN-код скоро может уйти на пенсию.

Всем хорошо известны сцены из фантастических фильмов: герой подходит к двери и дверь открывается, узнав его. Это одна из наглядных демонстраций удобства и надежности применения биометрических технологий для контроля доступа. Однако на практике не так все просто. Сегодня некоторые фирмы готовы предложить потребителям контроль доступа с применением биометрических технологий.

Традиционные методы идентификации личности, в основе которых находятся различные идентификационные карты, ключи или уникальные данные, такие как, например, пароль не являются надежными в той степени, которая требуется на сегодняшний день. Естественным шагом в повышении надежности идентификаторов стали попытки использования биометрических технологий для систем безопасности.

Диапазон проблем, решение которых может быть найдено с использованием новых технологий, чрезвычайно широк:

  1. предотвратить проникновение злоумышленников на охраняемые территории и в помещения за счет подделки, кражи документов, карт, паролей;
  2. ограничить доступ к информации и обеспечить персональную ответственность за ее сохранность;
  3. обеспечить допуск к ответственным объектам только сертифицированных специалистов;
  4. избежать накладных расходов, связанных с эксплуатацией систем контроля доступа (карты, ключи);
  5. исключить неудобства, связанные с утерей, порчей или элементарным забыванием ключей, карт, паролей;
  6. организовать учет доступа и посещаемости сотрудников.

Разработкой технологий для распознавания образов по различным биометрическим характеристикам начали заниматься уже достаточно давно, начало было положено в 60-е годы. Значительных успехов в разработке теоретических основ этих технологий добились наши соотечественники. Однако практические результаты получены в основном на западе и только “вчера”. Мощность современных компьютеров и усовершенствованные алгоритмы позволили создать продукты, которые по своим характеристикам и соотношению стали доступны и интересны широкому кругу пользователей.

Идея использовать индивидуальные характеристики человека для его идентификации не нова. На сегодняшний день известен ряд технологий, которые могут быть задействованы в системах безопасности для идентификации личности по:

  1. отпечаткам пальцев (как отдельных, так и руки в целом);
  2. чертам лица (на основе оптического и инфракрасного изображений);
  3. радужной оболочке глаз;
  4. голосу;
  5. другим характеристикам.

У всех биометрических технологий существуют общие подходы к решению задачи идентификации, хотя все методы отличаются удобством применения, точностью результатов.

Любая биометрическая технология применяется поэтапно:

  1. сканирование объекта;
  2. извлечение индивидуальной информации;
  3. формирование шаблона;
  4. сравнение текущего шаблона с базой данных.

Биометрическая система распознавания устанавливает соответствие конкретных физиологических или поведенческих характеристик пользователя некоторому заданному шаблону. Обычно биометрическая система состоит из двух модулей: модуль регистрации и модуль идентификации.

Модуль регистрации “обучает” систему идентифицировать конкретного человека. На этапе регистрации видеокамера или иные датчики сканируют человека для того, чтобы создать цифровое представление его облика. Сканирование лица длится около 20 - 30 секунд, в результате чего формируются несколько изображений. В идеальном случае, эти изображения будут иметь слегка различные ракурсы и выражения лица, что позволит получить более точные данные. Специальный программный модуль обрабатывает это представление и определяет характерные особенности личности, затем создает шаблон. Существуют некоторые части лица, которые практически не изменяются с течением времени, это, например, верхние очертания глазниц, области окружающие скулы, и края рта. Большинство алгоритмов, разработанных для биометрических технологий, позволяют учитывать возможные изменения в прическе человека, так как они не используют для анализа области лица выше границы роста волос. Шаблон изображения каждого пользователя хранится в базе данных биометрической системы.

Модуль идентификации получает от видеокамеры изображение человека и преобразует его в тот же цифровой формат, в котором хранится шаблон. Полученные данные сравниваются с хранимым в базе данных шаблоном для того, чтобы определить, соответствуют ли эти изображения друг другу. Степень подобия, требуемая для проверки, представляет собой некий порог, который может быть отрегулирован для различного типа персонала, мощности PC, времени суток и ряда иных факторов.

Идентификация может выполняться в виде верификации, аутентификации или распознавания. При верификации подтверждается идентичность полученных данных и шаблона, хранимого в базе данных. Аутентификация - подтверждает соответствие изображения, получаемого от видеокамеры одному из шаблонов, хранящихся в базе данных. При распознавании, если полученные характеристики и один из хранимых шаблонов оказываются одинаковыми, то система идентифицирует человека с соответствующим шаблоном.

При использовании биометрических систем, особенно системы распознавания по лицу, даже при введении корректных биометрических характеристик не всегда решение об аутентификации верно. Это связано с рядом особенностей и, в первую очередь, с тем, что многие биометрические характеристики могут изменяться. Существует определенная степень вероятности ошибки системы. Причем при использовании различных технологий ошибка может существенно различаться. Для систем контроля доступа при использовании биометрических технологий необходимо определить, что важнее не пропустить “чужого” или пропустить всех “своих”.

Важным фактором для пользователей биометрических технологий в системах безопасности является простота использования. Человек, характеристики которого сканируются, не должен при этом испытывать никаких неудобств. В этом плане наиболее интересным методом является, безусловно, технология распознавания по лицу. Правда, в этом случае возникают иные проблемы, связанные в первую очередь, с точностью работы системы.

Несмотря на очевидные преимущества, существует ряд негативных предубеждений против биометрии, которые часто вызывают вопросы о том, не будут ли биометрические данные использоваться для слежки за людьми и нарушения их права на частную жизнь. Из-за сенсационных заявлений и необоснованной шумихи восприятие биометрических технологий резко отличается от реального положения дел.

И все же, использование биометрических методов идентификации приобрело особую актуальность в последние годы. Особенно остро данная проблема проявилась после событий 11 сентября в США. Мировое сообщество осознало степень возрастания угрозы терроризма во всем мире и сложность организации надежной защиты традиционными методами. Именно эти трагические события послужили отправной точкой для усиления внимания к современным интегрированным системам безопасности. Общеизвестно мнение, что если бы контроль в аэропортах был строже, то несчастий можно было бы избежать. Да и сегодня поиск виновных в ряде других происшествий мог бы быть существенно облегчен при использовании современных систем видеонаблюдения в интеграции с системами распознавания лиц.

В настоящее время существует четыре основных метода распознавания лица:

  1. "eigenfaces";
  2. анализ "отличительных черт";
  3. анализ на основе "нейронных сетей";
  4. метод "автоматической обработки изображения лица".

Все эти методы различаются сложностью реализации и целью применения.

"Eigenface" можно перевести как "собственное лицо". Эта технология использует двумерные изображения в градациях серого, которые представляют отличительные характеристики изображения лица. Метод "eigenface" часто используются в качестве основы для других методов распознавания лица.

Комбинируя характеристики 100 - 120 "eigenface" можно восстановить большое количество лиц. В момент регистрации, "eigenface" каждого конкретного человека представляется в виде ряда коэффициентов. Для режима установления подлинности, в котором изображение используется для проверки идентичности, "живой" шаблон сравнивается с уже зарегистрированным шаблоном, с целью определения коэффициента различия. Степень различия между шаблонами и определяет факт идентификации. Технология "eigenface" оптимальна при использовании в хорошо освещенных помещениях, когда есть возможность сканирования лица в фас.

Методика анализа "отличительных черт" - наиболее широко используемая технология идентификации. Эта технология подобна методике "Eigenface", но в большей степени адаптирована к изменению внешности или мимики человека (улыбающееся или хмурящееся лицо). В технологии “отличительных черт” используются десятки характерных особенностей различных областей лица, причем с учетом их относительного местоположения. Индивидуальная комбинация этих параметров определяет особенности каждого конкретного лица. Лицо человека уникально, но достаточно динамично, т.к. человек может улыбаться, отпускать бороду и усы, надевать очки - все это увеличивает сложность процедуры идентификации. Таким образом, например, при улыбке наблюдается некоторое смещение частей лица, расположенных около рта, что в свою очередь будет вызывать подобное движение смежных частей. Учитывая такие смещения, можно однозначно идентифицировать человека и при различных мимических изменениях лица. Так как этот анализ рассматривает локальные участки лица, допустимые отклонения могут находиться в пределах до 25° в горизонтальной плоскости, и приблизительно до 15° в вертикальной плоскости и требует достаточно мощной и дорогой аппаратуры, что соответственно сокращает степень распространения данного метода.

В методе, основанном на нейронной сети, характерные особенности обоих лиц - зарегистрированного и проверяемого сравниваются на совпадение. "Нейронные сети" используют алгоритм, устанавливающий соответствие уникальных параметров лица проверяемого человека и параметров шаблона, находящегося в базе данных, при этом применяется максимально возможное число параметров. По мере сравнения определяются несоответствия между лицом проверяемого и шаблона из базы данных, затем запускается механизм, который с помощью соответствующих весовых коэффициентов определяет степень соответствия проверяемого лица шаблону из базы данных. Этот метод увеличивает качество идентификации лица в сложных условиях.

Метод "автоматической обработки изображения лица" - наиболее простая технология, использующая расстояния и отношение расстояний между легко определяемыми точками лица, такими как глаза, конец носа, уголки рта. Хотя данный метод не столь мощный как "eigenfaces" или "нейронная сеть", он может быть достаточно эффективно использован в условиях слабой освещенности.

Системы распознавания по лицу, присутствующие на рынке

На сегодняшний день разработан ряд коммерческих продуктов, предназначенных для распознавания лиц. Алгоритмы, используемые в этих продуктах, различны и пока еще сложно дать оценку, какая из технологий имеет преимущества. Лидерами в настоящий момент являются следующие системы: Visionic, Viisage и Miros.

  • В основе приложения FaceIt компании Visionic лежит алгоритм анализа локальных признаков, разработанный в Университете Рокфеллера. Одна коммерческая компания в Великобритании интегрировала FaceIt в телевизионную антикриминальную систему под названием Mandrake. Эта система ищет преступников по видеоданным, которые поступают с 144 камер, объединенных в замкнутую сеть. Когда устанавливается идентичность, система сообщает об этом офицеру безопасности. В России представителем компании Visionic является компания “ДанКом”.
  • Еще один лидер в этой области, компания Viisage, использует алгоритм, разработанный в Массачусетском технологическом институте. Коммерческие компании и государственные структуры во многих американских штатах и в ряде других стран используют систему компании Viisage вместе с идентификационными удостоверениями, например, водительскими правами.
  • ZN Vision Technologies AG (Германия) предлагает на рынке ряд продуктов, в которых применяется технология распознавания лиц. Эти системы представляются на российском рынке компанией “Солинг”.
  • В системе распознавания лиц TrueFace компании Miros используется технология нейронных сетей, а сама система применяется в комплексе выдачи наличных денег корпорации Mr.Payroll и установлена в казино и других увеселительных заведениях многих штатов США.

В США независимыми экспертами было проведено сравнительное тестирование различных технологий распознавания лиц. Результаты тестирования представлены ниже.


Рис. 1. Сравнительный анализ эффективности распознавания лиц в разных системах

На практике, при использовании систем распознавания лиц в составе стандартных электронных охранных систем, предполагается, что человек, которого следует идентифицировать, смотрит прямо в камеру. Таким образом, система работает с относительно простым двумерным изображением, что заметно упрощает алгоритмы и снижает интенсивность вычислений. Но даже в этом случае задача распознавания все же не тривиальна, поскольку алгоритмы должны учитывать возможность изменения уровня освещения, изменение выражения лица, наличие или отсутствие макияжа или очков.

Надежность работы системы распознавания лиц очень сильно зависит от нескольких факторов:

  • Качество изображения. Заметно снижается вероятность безошибочной работы системы, если человек, которого мы пытаемся идентифицировать, смотрит не прямо в камеру или снят при плохом освещении.
  • Актуальность фотографии, занесенной в базу данных.
  • Величина базы данных.

Технологии распознавания лица хорошо работают со стандартными видеокамерами, которые передают данные и управляются персональным компьютером, и требуют разрешения 320x240 пикселов на дюйм при скорости видео потока, по крайней мере, 3 - 5 кадров в секунду. Для сравнения - приемлемое качество для видео конференции требует скорости видеопотока уже от 15 кадров в секунду. Более высокая скорость видеопотока при более высоком разрешении ведет к улучшению качества идентификации. При распознавании лиц с большого расстояния существует сильная зависимость между качеством видеокамеры и результатом идентификации.

Объем баз данных при использовании стандартных персональных компьютеров не превышает 10000 изображений.

Заключение

Предлагаемые сегодня методы распознавания лиц интересны и близки к широкому внедрению, однако пока не возможно как в кино доверять открытие двери только технологии распознавания по лицу. Она хороша как помощник для охранника или другой системы контроля доступа.

Именно этот метод используется во многих ситуациях, когда требуется убедиться, что предъявленный документ действительно принадлежит предъявившему его человеку. Это происходит, например, в международном аэропорте, когда пограничник сверяет фото на паспорте с лицом владельца паспорта и принимает решение, его это паспорт или нет. По аналогичному алгоритму действует и компьютерная система доступа. Отличие состоит только в том, что фотография сравнивается с уже хранимым в базе данных шаблоном.

Уже появились технологии, которые основаны на распознавании лиц в инфракрасном свете. Новая технология основана на том, что тепловая картинка, созданная излучением тепла кровеносными сосудами лица или, по-другому, термограмма лица человека, является уникальной для каждого и, следовательно, может быть использована в качестве биометрической характеристики для систем контроля доступа. Данная термограмма является более стабильным идентификатором, чем геометрия лица, поскольку почти не зависит от изменения внешности человека.

В последние годы биометрия все более активно проникает в нашу жизнь. Ведущие страны мира уже ввели в оборот или в ближайшее время планируют ввести электронные паспорта, содержащие сведения о биометрических характеристиках своего владельца; многие офисные центры внедрили биометрические сенсоры в корпоративные системы контроля доступа; ноутбуки уже давно оснащаются средствами биометрической аутентификации пользователя; на вооружении служб безопасности появляются современные средства выявления любого разыскиваемого преступника в толпе людей

Андрей Хрулев
Начальник отдела биометрических
и комплексных систем безопасности
Группы компаний "Техносерв", к.т.н.

Примеров использования биометрических систем становится все больше. Успех биометрии легко объяснить. Традиционные средства идентификации личности, основанные на принципах "Я – то, что я имею" (идентификационные карты, токены, удостоверяющие документы) и "Я – то, что я знаю" (пароли, пин-коды) – не совершенны. Карту легко потерять, пароль можно забыть, к тому же ими может воспользоваться любой злоумышленник, и ни одна система не сможет отличить вас от подставного лица.

Кроме того, традиционные средства идентификации абсолютно бесполезны, если речь идет о задачах скрытой идентификации личности, а таких задач становится все больше:

  • распознать преступника в толпе;
  • проверить, действительно ли паспорт предъявляет его владелец;
  • узнать, не находится ли человек в розыске;
  • выяснить, не был ли человек ранее замешан в финансовых махинациях с кредитами;
  • выявить потенциально опасных болельщиков при входе на стадион и т.д.

Все эти задачи могут быть решены только с использованием средств биометрической идентификации личности, основанных на принципе "Я – то, что я есть". Такой принцип позволяет информационной системе идентифицировать непосредственно человека, а не предметы, которые он предъявляет, или информацию, которую сообщает.

Уникальность биометрии лица

Среди всего многообразия биометрических характеристик человека, используемых для идентификации личности, особо стоит отметить изображение лица. Биометрия лица уникальна тем, что не требует создания специализированных сенсоров для получения изображения – изображение лица можно получить с обычной камеры системы видеонаблюдения. Более того, фотография лица присутствует практически на любом документе, удостоверяющем личность, а значит внедрение этой технологии на практике не сопряжено с разнообразными нормативными проблемами и сложностями социального восприятия технологии.

Стоит также отметить, что изображение лица может быть получено неявно для самого человека, а значит, биометрия лица оптимально подходит для построения систем мониторинга и скрытой идентификации.

Любая система распознавания лица – это типичная система распознавания образов, задача которой сводится к формированию некоторого набора признаков, так называемого биометрического шаблона, согласно заложенной в систему математической модели. Именно эта модель и составляет ключевое ноу-хау любой биометрической системы, а эффективность распознавания лица напрямую зависит от таких факторов, как устойчивость биометрического шаблона к различного рода помехам, искажениям в исходном фото- или видеоизображении.

Эффективность распознавания лица напрямую зависит от таких факторов, как устойчивость биометрического шаблона к различного рода помехам, искажениям в исходном фото- или видеоизображении

Несмотря на огромное многообразие систем распознавания лица, представленных как на российском рынке, так и в мире, во многих из них используются одни и те же биометрические движки – собственно программные реализации методов построения и сравнения математических моделей лица. В России наибольшее распространение получили такие биометрические движки, как Cognitec (разработка компании Cognitec Systems GmbH, Германия), "Каскад-Поток" (разработка компании "Техносерв", Россия), FRS SDK (разработка компании Asia Software, Казахстан), FaceIt (разработка компании L1 Identity Solutions, США).

Как правило, распознавание лица в любом биометрическом движке выполняется в несколько этапов: обнаружение лица, оценка качества, построение шаблона, сопоставление и принятие решения.

Этап 1: обнаружение лица

На этом этапе система автоматически выделяет (детектирует) в потоке видеокадров или на фотографии лица людей, причем диапазон ракурсов и масштабов лиц может значительно варьироваться, что крайне важно для построения систем безопасности. Совершенно необязательно, что все выделенные лица будут распознаны (как правило, это и невозможно), но обнаружить максимальное количество лиц в потоке и, при необходимости, разместить их в архиве крайне полезно (рис. 1).


Обнаружение лица является одним из ключевых этапов распознавания, так как пропуск лица детектором автоматически означает невозможность дальнейшей идентификации. Качество работы детектора принято характеризовать вероятностью обнаружения лица P0. Для современных биометрических систем, работающих в условиях потока людей, значение вероятности обнаружения лица составляет от 95 до 99% и зависит от условий регистрации видео (освещенность, разрешение камер и т.д.).

Одной из наиболее перспективных тенденций развития рынка биометрии является появление интеллектуальных цифровых видеокамер, реализующих функцию обнаружения лица на основе встроенной логики (рис. 2). Интеллектуальные видеокамеры позволяют получать не только качественный видеопоток, но и связанные с ним метаданные, содержащие сведения о найденных лицах.


Такой подход позволяет значительно снизить нагрузку на аппаратные мощности системы распознавания, что, в свою очередь, уменьшает конечную стоимость биометрических комплексов, делая их более доступными для конечного потребителя. Кроме того, уменьшаются требования к каналам передачи данных, поскольку при таком подходе нам не требуются гигабитные линии связи для передачи высококачественного видео, а достаточно наличия стандартных сетей для передачи сжатого видео и незначительного потока детектированных изображений лиц.

Этап 2: оценка качества

Это очень важный этап распознавания, на котором биометрический движок осуществляет выбор из всего массива детектированных лиц только тех изображений, которые удовлетворяют заданным критериям качества.

Часто разработчики биометрических систем лукавят, утверждая, что их система обеспечивает высокий уровень распознавания при соответствии изображений лица в видеопотоке требованиям качества, определенным в ГОСТ Р ИСО/МЭК 19794-5. Однако этот ГОСТ накладывает очень жесткие (практически идеальные) условия на качество фотографий лица (фронтальный ракурс лица с отклонением не более чем на 5 град.; равномерная освещенность; нейтральная мимика и т.п.), которые не могут быть выполнены в реальных условиях систем видеонаблюдения. Такие требования ГОСТа вполне оправданы тем, что, по сути, данный стандарт предназначен для унификации формата хранения электронной фотографии в паспортно-визовых документах нового поколения – так называемых биометрических паспортах. На практике системы биометрической идентификации вынуждены иметь дело с гораздо менее благоприятными условиями работы:

  • отклонение лица от фронтального положения на углы, превышающие 20 град.;
  • сильная засветка;
  • перекрытие части лица;
  • наличие теней на лице;
  • малый размер изображения и т.п.

Именно стабильность работы биометрического движка в таких сложных условиях и определяет его качество. В современных биометрических движках на этапе оценки качества, как правило, оцениваются:

  • ракурс лица (не должен превышать 20– 30 град.);
  • размер лица, (оценивается по расстоянию между зрачками глаз и должен быть больше 50–80 пкс);
  • частичное закрытие лица (закрытие лица не должно быть больше 10–25% от общей площади лица).

Существует общее заблуждение, что если на изображении лица глаза закрыты (морганием или очками), то якобы система не сможет распознать человека. Действительно ранние алгоритмы распознавания лица использовали центры зрачков глаз в качестве базы для дальнейшей обработки изображения, в частности для стандартного масштабирования лица. Однако в настоящий момент многие современные биометрические движки (например, Cognitec или "Каскад-Поток") используют более сложные схемы кодирования лица и не привязаны к положению центров зрачков.

Этап 3: построение шаблона

Это один из самых сложных и уникальных этапов распознавания лица, составляющий ключевое ноу-хау технологии биометрического движка. Суть данного этапа состоит в нетривиальном математическом преобразовании изображения лица в набор признаков, объединенных в биометрический шаблон.

Каждому лицу соответствует свой уникальный биометрический шаблон. Принципы построения биометрических шаблонов чрезвычайно многообразны: шаблон может быть основан на текстурных свойствах лица, на геометрических особенностях, на характерных точках, на комбинации различных разнородных признаков.

Важнейшей характеристикой биометрического шаблона является его размер. Чем больше размер шаблона, тем больше информативных признаков он включает в себя, но тем ниже скорость и эффективность поиска этого шаблона. Типичное значение размера шаблона лица в биометрических системах составляет от 1 до 20 кбайт.

Этап 4: сопоставление и принятие решения

Это объединенный этап работы системы распознавания, на котором производится сравнение биометрического шаблона лица, построенного по детектированному лицу, с массивом шаблонов, хранящихся в базе данных. В простейшем случае сопоставление осуществляется простым перебором всех шаблонов и оценкой меры их схожести. На основании полученных оценок и их сопоставления с заданными порогами принимается решение о наличии или отсутствии идентичной личности в базе данных.

В современных системах сопоставление реализуется по сложным оптимальным схемам сравнения, обеспечивающим скорость сопо ставления от 10 000 до 200 000 сравнений в секунду и более. Причем стоит понимать, что процесс сопоставления может быть запараллелен, что позволяет работать системам идентификации практически в режиме реального времени даже по большим массивам изображений, например в 100 000 персон.

Качество работы систем распознавания лиц принято характеризовать вероятностями идентификации. Очевидно, что при биометрической идентификации возможно появление двух типов ошибок.

  1. Первая ошибка связана с возможностью пропустить и не распознать человека, на самом деле находящегося в базе данных, – ее часто называют ошибкой первого рода. Причем часто указывают не само значение ошибки первого рода, а единицу минус вероятность ошибки первого рода. Такое значение называют вероятностью правильного распознавания PПР.
  2. Вторая ошибка отражает случаи, когда система распознает человека, на самом деле не находящегося в базе данных или путает его с другим человеком, – ее принято называть ошибкой второго рода. Для современных систем распознавания лица типичное значение вероятности правильного распознавания, как правило, находится в диапазоне от 80 до 97%, при ошибке второго рода не превышающей 1%.

Условия успешной идентификации

Стоит понимать, что распознавание лица – не абсолютная технология. Часто можно слышать критику в адрес биометрических систем, что на реальных объектах не удается достичь столь же высоких показателей, как и в "лабораторных" условиях. Это утверждение верно лишь отчасти. Действительно, эффективно распознавать лицо можно только в определенных условиях, именно поэтому крайне важно при внедрении биометрии лица понимать, в каких условиях будет эксплуатироваться система. Однако для большинства современных систем распознавания эти условия вполне достижимы на реальных объектах. Так, для повышения эффективности распознавания лица в идентификационных зонах следует организовывать направленный поток людей (дверные проемы, рамки металлодетекторов, турникеты и т.п.) для обеспечения возможности кратковременной (не более 1–2 с) фиксации лица каждого посетителя. При этом камеры видеофиксации должны быть установлены с таким условием, чтобы угол отклонения зафиксированных лиц от фронтального положения не превышал 20–30 град. (например, установка камер на удалении от зоны прохода в 8–10 м при высоте подвеса на 2–3 м).

Соблюдение этих условий при внедрении систем распознавания позволяет эффективно решать задачу идентификации личности и поиска людей, представляющих определенный интерес, с вероятностями, максимально приближенными к декларируемым разработчиками значениям показателей успешной идентификации.

В последнее время на Хабре появляется множество статей, посвящённых Гугловским системам идентификации по лицам. Если честно, то от многих из них так и несёт журналистикой и мягко говоря некомпетентностью. И захотелось мне написать хорошую статью по биометрии, оно же мне не в первой! Пара неплохих статей по биометрии на Хабре есть - но они достаточно короткие и неполные. Тут я попробую вкратце обрисовать общие принципы биометрической идентификации и современные достижения человечества в этом вопросе. В том числе и в идентификации по лицам.

У статьи есть продолжение , которое, по-сути, является её приквэлом.

В качестве основы для статьи будет использована совместная с коллегой публикация в журнале (БДИ, 2009), переработанная под современные реалии. Коллеги пока Хабре нет, но публикацию переработанной статьи тут он поддержал. На момент публикации статья являлась кратким обзором современного рынка биометрических технологий, который мы проводили для себя перед тем как выдвинуть свой продукт. Оценочные суждения о применимости, выдвинутые во второй части статьи основаны на мнениях людей, использовавших и внедрявших продукты, а так же на мнениях людей, занимающихся производством биометрических систем в России и Европе.

Общая информация

Начнём с азов. В 95% случаев биометрия по своей сути - это математическая статистика. А матстат это точная наука, алгоритмы из которой используются везде: и в радарах и в байесовских системах. В качестве двух основных характеристик любой биометрической системы можно принять ошибки первого и второго рода). В теории радиолокации их обычно называют «ложная тревога» или «пропуск цели», а в биометрии наиболее устоявшиеся понятия - FAR (False Acceptance Rate) и FRR(False Rejection Rate). Первое число характеризует вероятность ложного совпадения биометрических характеристик двух людей. Второе – вероятность отказа доступа человеку, имеющего допуск. Система тем лучше, чем меньше значение FRR при одинаковых значениях FAR. Иногда используется и сравнительная характеристика EER, определяющая точку в которой графики FRR и FAR пересекаются. Но она далеко не всегда репрезентативна. Подробнее можно посмотреть, например, .
Можно отметить следующее: если в характеристиках системы не даны FAR и FRR по открытым биометрическим базам - то что бы производители не заявляли о её характеристиках, эта система скорее всего недееспособна или сильно слабее конкурентов .
Но не только FAR и FRR определяют качество биометрической системы. Если бы это было только так, то лидирующей технологией было бы распознавание людей по ДНК, для которой FAR и FRR стремятся к нулю. Но ведь очевидно, что эта технология не применима на сегодняшнем этапе развития человечества! Нами было выработано несколько эмпирических характеристик, позволяющих оценить качество системы. «Устойчивость к подделке» – это эмпирическая характеристика, обобщающая то, насколько легко обмануть биометрический идентификатор. «Устойчивость к окружающей среде» – характеристика, эмпирически оценивающая устойчивость работы системы при различных внешних условиях, таких как изменение освещения или температуры помещения. «Простота использования» показывает насколько сложно воспользоваться биометрическим сканером, возможна ли идентификация «на ходу». Важной характеристикой является «Скорость работы», и «Стоимость системы». Не стоит забывать и то, что биометрическая характеристика человека может изменяться со временем, так что если она неустойчива– это существенный минус.
Обилие биометрических методов поражает. Основными методами, использующими статические биометрические характеристики человека, являются идентификация по папиллярному рисунку на пальцах, радужной оболочке, геометрии лица, сетчатке глаза, рисунку вен руки, геометрии рук. Также существует семейство методов, использующих динамические характеристики: идентификация по голосу, динамике рукописного подчерка, сердечному ритму, походке. Ниже представлено распределение биометрического рынка пару лет назад. В каждом втором источнике эти данные колеблются на 15-20 процентов, так что это всего лишь оценочное представление. Так же тут под понятием «геометрия руки» скрываются два разных метода о которых будет рассказано ниже.

В статье мы будем рассматривать только те характеристики, которые применимы в системах контроля и управления доступом (СКУД) или в близких им задачах. В силу своего превосходства это в первую очередь именно статические характеристики. Из динамических характеристик на сегодняшний момент только распознавание по голосу имеет хоть какую-то статистическую значимость(сравнимую с худьшими статическими алгоритмами FAR~0.1%, FRR~6%), но лишь в идеальных условиях.
Чтобы ощутить вероятности FAR и FRR, можно оценить, как часто будут возникать ложные совпадения, если установить систему идентификации на проходной организации с численностью персонала N человек. Вероятность ложного совпадения полученного сканером отпечатка пальца для базы данных из N отпечатков равна FAR∙N. И каждый день через пункт контроля доступа проходит тоже порядка N человек. Тогда вероятность ошибки за рабочий день FAR∙(N∙N). Конечно, в зависимости от целей системы идентификации вероятность ошибки за единицу времени может сильно варьироваться, но если принять допустимым одну ошибку в течение рабочего дня, то:
(1)
Тогда получим, что стабильная работа системы идентификации при FAR=0.1% =0.001 возможна при численности персонала N≈30.

Биометрические сканеры

На сегодняшний день понятие «биометрический алгоритм» и «биометрический сканер» не обязательно взаимосвязаны. Компания может выпускать эти элементы по одиночке, а может совместно. Наибольшая дифференциация производителей сканеров и производителей софта достигнута на рынке биометрии папиллярного узора пальцев. Наименьшая на рынке сканеров 3D лица. По сути уровень дифференциации во многом отображает развитость и насыщенность рынка. Чем больше выбора - тем более тематика отработана и доведена до совершенства. Различные сканеры имеют различный набор способностей. В основном это набор тестов для проверки подделан объект биометрии или нет. Для сканеров пальцев это может быть проверка рельефности или проверка температуры, для сканеров глаза это может быть проверка аккомодации зрачка, для сканеров лица - движение лица.
Сканеры очень сильно влияют на полученную статистику FAR и FRR. В некоторых случаях эти цифры могут изменяться в десятки раз, особенно в реальных условиях. Обычно характеристики алгоритма даются для некой «идеальной» базы, или просто для хорошо подходящей, где выброшены нерезкие и смазанные кадры. Лишь немногие алгоритмы честно указывают и базу и полную выдачу FAR/FRR по ней.

А теперь поподробнее про каждую из технологий

Отпечатки пальцев


Дактилоскопия (распознавание отпечатков пальцев) - наиболее разработанный на сегодняшний день биометрический метод идентификации личности. Катализатором развития метода послужило его широкое использование в криминалистике 20 века.
Каждый человек имеет уникальный папиллярный узор отпечатков пальцев, благодаря чему и возможна идентификация. Обычно алгоритмы используют характерные точки на отпечатках пальцев: окончание линии узора, разветвлении линии, одиночные точки. Дополнительно привлекается информация о морфологической структуре отпечатка пальца: относительное положение замкнутых линий папиллярного узора, «арочных» и спиральных линий. Особенности папиллярного узора преобразовываются в уникальный код, который сохраняет информативность изображения отпечатка. И именно «коды отпечатков пальцев» хранятся в базе данных, используемой для поиска и сравнения. Время перевода изображения отпечатка пальца в код и его идентификация обычно не превышает 1с, в зависимости от размера базы. Время, затраченное на поднесение руки – не учитывается.
В качестве источника данных по FAR и FRR использовались статистические данные VeriFinger SDK, полученные при помощи сканера отпечатков пальцев DP U.are.U. За последние 5-10 лет характеристики распознавания по пальцу не сильно шагнули вперёд, так что приведённые цифры неплохо показывают среднее значение современных алгоритмов. Сам алгоритм VeriFinger несколько лет выигрывал международное соревнование «International Fingerprint Verification Competition», где соревновались алгоритмы распознавания по пальцу.

Характерное значение FAR для метода распознавания отпечатков пальцев – 0.001%.
Из формулы (1) получим, что стабильная работа системы идентификации при FAR=0.001% возможна при численности персонала N≈300.
Преимущества метода. Высокая достоверность - статистические показатели метода лучше показателей способов идентификации по лицу, голосу, росписи. Низкая стоимость устройств, сканирующих изображение отпечатка пальца. Достаточно простая процедура сканирования отпечатка.
Недостатки: папиллярный узор отпечатка пальца очень легко повреждается мелкими царапинами, порезами. Люди, использовавшие сканеры на предприятиях с численностью персонала порядка нескольких сотен человек заявляют о высокой степени отказа сканирования. Многие из сканеров неадекватно относятся к сухой коже и не пропускают стариков. При общении на последней выставке MIPS начальник службы безопасности крупного химического предприятия рассказывал что их попытка ввести сканеры пальцев на предприятии (пробовались сканеры различных систем) провалилась - минимальное воздействие химических реактивов на пальцы сотрудников вызывало сбой систем безопасности сканеров - сканеры объявляли пальцы подделкой. Так же присутствует недостаточная защищённость от подделки изображения отпечатка, отчасти вызванная широким распространением метода. Конечно, не все сканеры можно обмануть методами из Разрушителей Легенд, но всё же. Для некоторых людей с «неподходящими» пальцами (особенности температуры тела, влажности) вероятность отказа в доступе может достигать 100%. Количество таких людей варьируется от долей процентов для дорогих сканеров до десяти процентов для недорогих.
Конечно, стоит отметить, что большое количество недостатков вызвано широкой распространённостью системы, но эти недостатки имеют место быть и проявляются они очень часто.
Ситуация на рынке
На данный момент системы распознавания по отпечаткам пальцев занимают более половины биометрического рынка. Множество российских и зарубежных компаний занимаются производством систем управления доступом, основанных на методе дактилоскопической идентификации. По причине того, что это направление является одним из самых давнишних, оно получило наибольшее распространение и является на сегодняшний день самым разработанным. Сканеры отпечатков пальцев прошли действительно длинный путь к улучшению. Современные системы оснащены различными датчиками (температуры, силы нажатия и т.п.), которые повышают степень защиты от подделок. С каждым днем системы становятся все более удобными и компактными. По сути, разработчики достигли уже некоего предела в данной области, и развивать метод дальше некуда. Кроме того, большинство компаний производят готовые системы, которые оснащены всем необходимым, включая программное обеспечение. Интеграторам в этой области просто нет необходимости собирать систему самостоятельно, так как это невыгодно и займет больше времени и сил, чем купить готовую и уже недорогую при этом систему, тем более выбор будет действительно широк.
Среди зарубежных компаний, занимающихся системами распознавания по отпечаткам пальцев, можно отметить SecuGen(USB-сканеры для PC, сканеры, которые можно устанавливать на предприятия или встраивать в замки, SDK и ПО для связи системы с компьютером); Bayometric Inc. (fingerprint scanners, TAA/Access control systems, fingerprint SDKs, embedded fingerprint modules); DigitalPersona, Inc. (USB-scanners, SDK). В России в данной области работают компании: BioLink (дактилоскопические сканеры, биометрические устройства управления доступом, ПО); Сонда (дактилоскопические сканеры, биометрические устройства управления доступом, SDK); СмартЛок (дактилоскопические сканеры и модули) и др.

Радужная оболочка



Радужная оболочка глаза является уникальной характеристикой человека. Рисунок радужки формируется на восьмом месяце внутриутробного развития, окончательно стабилизируется в возрасте около двух лет и практически не изменяется в течение жизни, кроме как в результате сильных травм или резких патологий. Метод является одним из наиболее точных среди биометрических методов.
Система идентификации личности по радужной оболочке логически делится на две части: устройство захвата изображения, его первичной обработки и передачи вычислителю и вычислитель, производящий сравнение изображения с изображениями в базе данных, передающий команду о допуске исполнительному устройству.
Время первичной обработки изображения в современных системах примерно 300-500мс, скорость сравнения полученного изображения с базой имеет уровень 50000-150000 сравнений в секунду на обычном ПК. Такая скорость сравнения не накладывает ограничений на применения метода в больших организациях при использовании в системах доступа. При использовании же специализированных вычислителей и алгоритмов оптимизации поиска становится даже возможным идентифицировать человека среди жителей целой страны.
Сразу могу ответить что я несколько предвзято и положительно отношусь к этому методу, так как именно на этой ниве мы запускали свой стартап. Небольшому самопиару будет посвящён абзац в конце.
Статистические характеристики метода
Характеристики FAR и FRR для радужной оболочки глаза наилучшие в классе современных биометрических систем (за исключением, возможно, метода распознавания по сетчатке глаза). В статье приведены характеристики библиотеки распознавания радужной оболочки нашего алгоритма - EyeR SDK, которые соответствуют проверенному по тем же базам алгоритму VeriEye. Использовались базы фирмы CASIA, полученные их сканером.

Характерное значение FAR – 0.00001%.
Согласно формуле (1) N≈3000 - численность персонала организации, при которой идентификация сотрудника происходит достаточно стабильно.
Здесь стоит отметить немаловажную особенность, отличающую систему распознавания по радужной оболочке от других систем. В случае использования камеры разрешения от 1.3МП можно захватывать два глаза на одном кадре. Так как вероятности FAR и FRR являются статистически независимыми вероятностями, то при распознавании по двум глазам значение FAR будет приблизительно равняться квадрату значения FAR для одного глаза. Например, для FAR 0,001% при использовании двух глаз вероятность ложного допуска будет равна 10-8 %, при FRR всего в два раза выше, чем соответствующее значение FRR для одного глаза при FAR=0.001%.
Преимущества и недостатки метода
Преимущества метода. Статистическая надёжность алгоритма. Захват изображения радужной оболочки можно производить на расстоянии от нескольких сантиметров до нескольких метров, при этом физический контакт человека с устройством не происходит. Радужная оболочка защищена от повреждений - а значит не будет изменяться во времени. Так же, возможно использовать высокое количество методов, защищающих от подделки.
Недостатки метода. Цена системы, основанной на радужной оболочке выше цены системы, основанной на распознавании пальца или на распознавании лица. Низкая доступность готовых решений. Любой интегратор, который сегодня придёт на российский рынок и скажет «дайте мне готовую систему» - скорее всего обломается. В большинстве своём продаются дорогие системы под ключ, устанавливаемые большими компаниями, такими как Iridian или LG.
Ситуация на рынке
На данный момент удельный вес технологий идентификации по радужной оболочке глаза на мировом биометрическом рынке составляет по разным подсчетам от 6 до 9 процентов (в то время как технологии распознавания по отпечаткам пальцев занимают свыше половины рынка). Следует отметить, что с самого начала развития данного метода, его укрепление на рынке замедляла высокая стоимость оборудования и компонентов, необходимых, чтобы собрать систему идентификации. Однако по мере развития цифровых технологий, себестоимость отдельной системы стала снижаться.
Лидером по разработке ПО в данной области является компания Iridian Technologies.
Вход на рынок большому количеству производителю был ограничен технической сложностью сканеров и, как следствие, их высокой стоимостью, а так же высокой ценой ПО из-за монопольного положения Iridian на рынке. Эти факторы позволяли развиться в области распознавания радужной оболочки только крупным компаниям, скорее всего уже занимающимся производством некоторых компонентов пригодных для системы идентификации (оптика высокого разрешения, миниатюрные камеры с инфракрасной подсветкой и т.п.). Примерами таких компаний могут быть LG Electronics, Panasonic, OKI. Они заключили договор с Iridian Technologies, и в результате совместной работы появились следующие системы идентификации: Iris Access 2200, BM-ET500, OKI IrisPass. В дальнейшем возникли усовершенствованные модели систем, благодаря техническим возможностям данных компаний самостоятельно развиваться в этой области. Следует сказать, что вышеперечисленные компании разработали также собственное ПО, но в итоге в готовой системе отдают предпочтение программному обеспечению Iridian Technologies.
На Российском рынке «преобладает» продукция зарубежных компаний. Хотя и ту можно купить с трудом. Длительное время фирма Папилон уверяла всех, что у них есть распознавание по радужной оболочке. Но даже представители РосАтома - их непосредственного закупщика, для которого они делали систему рассказывают, что это не соответствует действительности. В какой-то момент проявлялась ещё какая-то российская фирма, которая сделала сканеры радужной оболочки. Сейчас уже не вспомню названия. Алгоритм они у кого-то закупили, возможно у того же VeriEye. Сам сканер представлял собой систему 10-15 летней давности, отнюдь не бесконтактную.
В последний год на мировой рынок вышло пара новых производителей в связи с истечением первичного патента на распознавание человека по глазам. Наибольшего доверия из них, на мой взгляд, заслуживает AOptix. По крайней мере их превью и документация не вызывает подозрений. Второй компанией является SRI International. Даже на первый взгляд человеку, занимавшемуся системами распознавания радужки их ролики кажутся весьма лживыми. Хотя я не удивлюсь если в реальности они что-то умеют. И та и та система не показывает данных по FAR и FRR, а так же, судя по всему, не защищена от подделок.

Распознавание по лицу

Существует множество методов распознавания по геометрии лица. Все они основаны на том, что черты лица и форма черепа каждого человека индивидуальны. Эта область биометрии многим кажется привлекательной, потому что мы узнаем друг друга в первую очередь по лицу. Данная область делится на два направления: 2-D распознавание и 3-D распознавание. У каждого из них есть достоинства и недостатки, однако многое зависит еще и от области применения и требований, предъявленных к конкретному алгоритму.
В кратце расскажу про 2-d и перейду к одному из самых интересных на сегодня методов - 3-d.
2-D распознавание лица

2-D распознавание лица - один из самых статистически неэффективных методов биометрии. Появился он довольно давно и применялся, в основном, в криминалистике, что и способствовало его развитию. В последствие появились компьютерные интерпретации метода, в результате чего он стал более надёжным, но, безусловно, уступал и с каждым годом все больше уступает другим биометрическим методам идентификации личности. В настоящее время из-за плохих статистических показателей он применяется, в мультимодальной или, как ее еще называют, перекрестной биометрии, или в социальных сетях.
Статистические характеристики метода
Для FAR и FRR использованы данные для алгоритмов VeriLook. Опять же, для современных алгоритмов он имеет весьма обыкновенные характеристики. Иногда промелькивают алгоритмы с FRR 0.1% при аналогичном FAR, но базы по которым они получены ну уж очень сомнительны (вырезанный фон, одинаковое выражение лица, одинаковые причёска, освещение).

Характерное значение FAR – 0.1%.
Из формулы (1) получаем N≈30 - численность персонала организации, при которой идентификация сотрудника происходит достаточно стабильно.
Как видно, статистические показатели метода достаточно скромные: это нивелирует то преимущество метода, что можно проводить скрытую съемку лиц в людных местах. Забавно наблюдать, как пару раз в год финансируется очередной проект по обнаружению преступников через видеокамеры, установленные в людных местах. За последние десяток лет статистические характеристики алгоритма не улучшились, а количество таких проектов - выросло. Хотя, стоит отметить, что для ведения человека в толпе через множество камер алгоритм вполне годится.
Преимущества и недостатки метода
Преимущества метода. При 2-D распознавании, в отличие от большинства биометрических методов, не требуется дорогостоящее оборудование. При соответствующем оборудовании возможность распознавания на значительных расстояниях от камеры.
Недостатки. Низкая статистическая достоверность. Предъявляются требования к освещению (например, не удается регистрировать лица входящих с улицы людей в солнечный день). Для многих алгоритмов неприемлемость каких-либо внешних помех, как, например, очки, борода, некоторые элементы прически. Обязательно фронтальное изображение лица, с весьма небольшими отклонениями. Многие алгоритмы не учитывают возможные изменения мимики лица, то есть выражение должно быть нейтральным.
3-D распознавание лица

Реализация данного метода представляет собой довольно сложную задачу. Несмотря на это в настоящее время существует множество методов по 3-D распознаванию лица. Методы невозможно сравнить друг с другом, так как они используют различные сканеры и базы. далеко не все из них выдают FAR и FRR, используются абсолютно различные подходы.
Переходным от 2-d к 3-d методом является метод, реализующий накопления информации о лицу. Этот метод имеет лучшие характеристики, чем 2d метод, но так же как и он использует всего одну камеру. При занесении субъекта в базу субъект поворачивает голову и алгоритм соединяет изображение воедино, создавая 3d шаблон. А при распознавании используется несколько кадров видеопотока. Этот метод скорее относится к экспериментальным и реализации для систем СКУД я не видел ни разу.
Наиболее классическим методом является метод проецирования шаблона. Он состоит в том, что на объект (лицо) проецируется сетка. Далее камера делает снимки со скоростью десятки кадров в секунду, и полученные изображения обрабатываются специальной программой. Луч, падающий на искривленную поверхность, изгибается - чем больше кривизна поверхности, тем сильнее изгиб луча. Изначально при этом применялся источник видимого света, подаваемого через «жалюзи». Затем видимый свет был заменен на инфракрасный, который обладает рядом преимуществ. Обычно на первом этапе обработки отбрасываются изображения, на котором лица не видно вообще или присутствуют посторонние предметы, мешающие идентификации. По полученным снимкам восстанавливается 3-D модель лица, на которой выделяются и удаляются ненужные помехи (прическа, борода, усы и очки). Затем производится анализ модели - выделяются антропометрические особенности, которые в итоге и записываются в уникальный код, заносящийся в базу данных. Время захвата и обработки изображения составляет 1-2 секунды для лучших моделей.
Так же набирает популярность метод 3-d распознавания по изображению, получаемому с нескольких камер. Примером этого может являться фирма Vocord со своим 3d сканером. Этот метод даёт точность позиционирования, согласно уверениям разработчиков, выше метода проецирования шаблона. Но, пока не увижу FAR и FRR хотя бы по их собственной базе - не поверю!!! Но его разрабатывают уже года 3, а подвижки на выставках пока не видны.
Статистические показатели метода
Полные данные о FRR и FAR для алгоритмов этого класса на сайтах производителей открыто не приведены. Но для лучших моделей фирмы Bioscript (3D EnrolCam, 3D FastPass), работающих по методу проецирования шаблона при FAR = 0.0047% FRR составляет 0.103%.
Считается, что статистическая надежность метода сравнима с надежностью метода идентификации по отпечаткам пальцев.
Преимущества и недостатки метода
Преимущества метода. Отсутствие необходимости контактировать со сканирующим устройством. Низкая чувствительность к внешним факторам, как на самом человеке (появление очков, бороды, изменение прически), так и в его окружении (освещенность, поворот головы). Высокий уровень надежности, сравнимый с метом идентификации по отпечаткам пальцев.
Недостатки метода. Дороговизна оборудования. Имеющиеся в продаже комплексы превосходили по цене даже сканеры радужной оболочки. Изменения мимики лица и помехи на лице ухудшают статистическую надежность метода. Метод еще недостаточно хорошо разработан, особенно в сравнении с давно применяющейся дактилоскопией, что затрудняет его широкое применение.
Ситуация на рынке
Распознавание по геометрии лица причисляют к «трем большим биометрикам» вместе с распознаванием по отпечаткам пальцев и радужной оболочке. Надо сказать, что данный метод довольно распространен, и ему отдают пока предпочтение перед распознаванием по радужке глаза. Удельный вес технологий распознавания по геометрии лица в общем объеме мирового биометрического рынка можно оценивать в пределах 13-18 процентов. В России к данной технологии также проявляется больший интерес, чем, например, к идентификации по радужной оболочке. Как уже упоминалось ранее, существует множество алгоритмов 3-D распознавания. В большинстве своем компании предпочитают развивать готовые системы, включающие сканеры, сервера и ПО. Однако есть и те, кто предлагает потребителю только SDK. На сегодняшний день можно отметить следующие компании, занимающиеся развитием данной технологии: Geometrix, Inc. (3D сканеры лица, ПО), Genex Technologies (3D сканеры лица, ПО) в США, Cognitec Systems GmbH (SDK, специальный вычислители, 2D камеры) в Германии, Bioscrypt (3D сканеры лица, ПО) – дочернее предприятие американской компании L-1 Identity Solutions.
В России в данном направлении работают компании Artec Group (3D сканеры лица и ПО) – компания, головной офис которой находится в Калифорнии, а разработки и производство ведутся в Москве. Также несколько российских компаний владеют технологией 2D распознавания лица – Vocord, ITV и др.
В области распознавания 2D лица основным предметом разработки является программное обеспечение, т.к. обычные камеры отлично справляются с захвата изображения лица. Решение задачи распознавания по изображению лица в какой-то степени зашло в тупик – уже на протяжении нескольких лет практически не происходит улучшения статистических показателей алгоритмов. В этой области происходит планомерная «работа над ошибками».
3D распознавание лица сейчас является куда более привлекательной областью для разработчиков. В нём трудится множество коллективов и регулярно слышно о новых открытиях. Множество работ находятся в состоянии «вот-вот и выпустим». Но пока что на рынке лишь старые предложения, за последние годы выбор не изменился.
Одним из интересных моментов, над которыми я иногда задумываюсь и на которые, возможно ответит Хабр: а точности kinect хватит для создания такой системы? Проекты по вытаскиванию 3d модели человека через него вполне себе есть.

Распознавание по венам руки


Это новая технология в сфере биометрии, широкое применение её началось всего лет 5-10 назад. Инфракрасная камера делает снимки внешней или внутренней стороны руки. Рисунок вен формируется благодаря тому, что гемоглобин крови поглощает ИК излучение. В результате, степень отражения уменьшается, и вены видны на камере в виде черных линий. Специальная программа на основе полученных данных создает цифровую свертку. Не требуется контакта человека со сканирующим устройством.
Технология сравнима по надёжности с распознаванием по радужной оболочке глаза, в чём-то превосходя её, а в чём-то уступая.
Значение FRR и FAR приведено для сканера Palm Vein. Согласно данным разработчика при FAR 0,0008% FRR составляет 0.01%. Более точный график для нескольких значений не выдаёт ни одна фирма.
Преимущества и недостатки метода
Преимущества метода. Отсутствие необходимости контактировать со сканирующим устройством. Высокая достоверность - статистические показатели метода сравнимы с показаниями радужной оболочки. Скрытость характеристики: в отличие от всех вышеприведённых - эту характеристику очень затруднительно получить от человека «на улице», например сфотографировав его фотоаппаратом.
Недостатки метода. Недопустима засветка сканера солнечными лучами и лучами галогеновых ламп. Некоторые возрастные заболевания, например артрит – сильно ухудшают FAR и FRR. Метод менее изучен в сравнении с другими статическими методами биометрии.
Ситуация на рынке
Распознавание по рисунку вен руки является довольно новой технологией, и в связи с этим ее удельный вес на мировом рынке невелик и составляет около 3%. Однако к данному методу проявляется все больший интерес. Дело в том, что, являясь довольно точным, этот метод не требует столь дорогого оборудования, как, например, методы распознавания по геометрии лица или радужной оболочке. Сейчас многие компании ведут разработки в данной сфере. Так, например, по заказу английской компании TDSi было разработано ПО для биометрического считывателя вен ладони PalmVein, представленного компанией Fujitsu. Сам сканер был разработан компанией Fujitsu в первую очередь для борьбы с финансовыми махинациями в Японии.
Также в сфере идентификации по рисунку вен работают следующие компании Veid Pte. Ltd. (scanner, software), Hitachi VeinID (scanners)
В России компаний, занимающихся данной технологией, мне не известно.

Сетчатка глаза


До недавнего времени считалось, что самый надёжный метод биометрической идентификации и аутентификации личности - это метод, основанный на сканировании сетчатки глаза. Он содержит в себе лучшие черты идентификации по радужной оболочке и по венам руки. Сканер считывает рисунок капилляров на поверхности сетчатки глаза. Сетчатка имеет неподвижную структуру, неизменную по времени, кроме как в результате болезни, например, катаракты.
Сканирование сетчатки происходит с использованием инфракрасного света низкой интенсивности, направленного через зрачок к кровеносным сосудам на задней стенке глаза. Сканеры сетчатки глаза получили широкое распространение в системах контроля доступа на особо секретные объекты, так как у них один из самых низких процентов отказа в доступе зарегистрированных пользователей и практически не бывает ошибочного разрешения доступа.
К сожалению, целый ряд трудностей возникает при использовании этого метода биометрии. Сканером тут является весьма сложная оптическая система, а человек должен значительное время не двигаться, пока система наводится, что вызывает неприятные ощущения.
По данным компании EyeDentify для сканера ICAM2001 при FAR=0,001% значение FRR составляет 0,4%.
Преимущества и недостатки метода
Преимущества. Высокий уровень статистической надёжности. Из-за низкой распространенности систем мала вероятность разработки способа их «обмана».
Недостатки. Сложная при использовании система с высоким временем обработки. Высокая стоимость системы. Отсутствие широкого рынка предложение и как следствие недостаточная интенсивность развития метода.

Геометрия рук


Этот метод, достаточно распространённы ещё лет 10 назад и произошедший из криминалистики в последние годы идёт на убыль. Он основан на получении геометрических характеристик рук: длин пальцев, ширины ладони и.т.д. Этот метод, как и сетчатка глаза - умирающий, а так как у него куда более низкие характеристики, то даже не будем вводить его боле полного описания.
Иногда считается что в системах распознавания по венам применяют геометрические методы распознавания. Но в продаже мы такого явно заявленного ни разу не видели. Да и к тому же часто при распознавании по венам делается снимок только ладони, тогда как при распознавании по геометрии делается снимок пальцев.

Немного самопиара

В своё время мы разработали неплохой алгоритм распознавания по глазам. Но на тот момент такая высокотехнологичная штука в этой стране была не нужна, а в буржуйстан (куда нас пригласили после первой же статьи) - ехать не хотелось. Но внезапно, спустя года полтора таки нашлись инвесторы, которые захотели построить себе «биометрический портал» - систему, которая бы кушала 2 глаза и использовала цветовую составляющую радужной оболочки (на что у инвестора был мировой патент). Собственно теперь мы этим и занимаемся. Но это не статья про самопиар, это краткое лирическое отступление. Если кому интересно есть немного инфы, а когда-нибудь в будущем, когда мы выйдем на рынок (или не выйдем) я тут напишу пару слов о перипетиях биометрического проекта в России.

Выводы

Даже в классе статических систем биометрии имеется большой выбор систем. Какую из них выбрать? Всё зависит от требований к системе безопасности. Самыми статистически надежными и устойчивыми к подделке системами доступа являются системы допуска по радужной оболочке и по венам рук. На первые из них существует более широкий рынок предложений. Но и это не предел. Системы биометрической идентификации можно комбинировать, достигая астрономических точностей. Самыми дешёвыми и простыми в использовании, но обладающими хорошей статистикой, являются системы допуска по пальцам. Допуск по 2D лицу удобен и дёшев, но имеет ограниченную область применений из-за плохих статистических показателей.
Рассмотрим характеристики, которые будет иметь каждая из систем: устойчивость к подделке, устойчивость к окружающей среде, простота использования, стоимость, скорость, стабильность биометрического признака во времени. Расставим оценки от 1 до 10 в каждой графе. Чем ближе оценка к 10, тем лучше система в этом отношении. Принципы выбора оценок были описаны в самом начале статьи.


Также рассмотрим соотношение FAR и FRR для этих систем. Это соотношение определяет эффективность системы и широту её использования.


Стоит помнить, что для радужной оболочки можно увеличить точность системы практически квадратично, без потерь для времени, если усложнить систему, сделав её на два глаза. Для дактилоскопического метода - путём комбинирования нескольких пальцев, и распознаванию по венам, путём комбинирования двух рук, но такое улучшение возможно только при увеличении времени, затрачиваемого при работе с человеком.
Обобщив результаты для методов, можно сказать, что для средних и больших объектов, а так же для объектов с максимальным требованием в безопасности следует использовать радужную оболочку в качестве биометрического доступа и, возможно, распознавание по венам рук. Для объектов с количеством персонала до нескольких сотен человек оптимальным будет доступ по отпечаткам пальцев. Системы распознавания по 2D изображению лица весьма специфические. Они могут потребоваться в случаях, когда распознавание требует отсутствия физического контакта, но поставить систему контроля по радужной оболочке невозможно. Например, при необходимости идентификации человека без его участия, скрытой камерой, или камерой наружного обнаружения, но возможно это лишь при малом количестве субъектов в базе и небольшом потоке людей, снимаемых камерой.

Юному технику на заметку

У некоторых производителей, например у Neurotechnology на сайте доступны демо-версии методов биометрии, которые они выпускают, так что вполне можно подключить их и поиграться. Для тех же, кто решит покопаться в проблеме посерьёзнее, могу посоветовать единственную книжку которую я видел на русском - «Руководство по биометрии» Р.М. Болл, Дж.Х. Коннел, Ш. Панканти. Там есть много алгоритмов и их математических моделей. Не всё полно и не всё соответствует современности, но база неплохая и объемлющая.

P.S.

В этом опусе я не вдавался в проблему аутентификации, а только затрагивал идентификацию. В принципе из характеристики FAR/FRR и возможности подделки все выводы по вопросу аутентификации напрашиваются сами.