Домой / Скайп / Когда появилась спутниковая связь.  современные спутники. спутник комстар. Основные мировые операторы подвижной спутниковой связи, известные в России

Когда появилась спутниковая связь.  современные спутники. спутник комстар. Основные мировые операторы подвижной спутниковой связи, известные в России

Космическая или спутниковая связь по существу является разновидностью радиорелейной (тропосферной) связи и отличается тем, что ее ретрансляторы находятся не на поверхности Земли, а на спутниках в космическом пространстве.

Впервые идею спутниковой связи представил в 1945 году англичанин Артур Кларк. В радиотехническом журнале он опубликовал статью о перспективах ракет, подобных «Фау-2», для запуска спутников Земли в научных и практических целях. Знаменателен последний абзац этой статьи: «Искусственный спутник на определенном расстоянии от Земли будет совершать один оборот за 24 ч. Он будет оставаться неподвижным над определенным местом и в пределах оптической видимости почти с половины земной поверхности. Три ретранслятора, размещенные на правильно выбранной орбите с угловым разнесением на 120°, смогут покрыть телевидением и УКВ радиовещанием всю планету; я боюсь, что те, кто планирует послевоенные работы, не сочтут это дело простым, но я считаю именно этот путь окончательным решением проблемы».

4 октября 1957 г. в СССР был осуществлен запуск первого в мире искусственного спутника Земли, первого космического объекта, сигналы которого принимались на Земле. Этот спутник положил начало космической эры. Излучаемые спутником сигналы использовались не только для пеленгации, но и для передачи информации о процессах на спутнике (температура, давление и пр.). Эта информация передавалась путем изменения длительности посылок, излучаемых передатчиками (широтно-импульсная модуляция). 12 апреля 1961 г. в Советском Союзе впервые в истории человечества осуществлен полет человека в космическое пространство. Космический корабль «Восток» с летчиком-космонавтом Ю. А. Гагариным на борту был выведен на орбиту спутника Земли. Для измерения параметров орбиты корабля-спутника и контроля работы его бортовой аппаратуры на нем была установлена многочисленная измерительная и радиотелеметрическая аппаратура. Для пеленгации корабля и передачи телеметрической информации использовалась радиосистема «Сигнал», работавшая на частоте 19,955 МГц. Двусторонняя связь космонавта с Землей обеспечивалась радиотелефонной системой, работавшей в диапазонах коротких (19,019 и 20,006 МГц) и ультракоротких (143,625 МГц) волн. Телевизионная система осуществляла передачу на Землю изображения космонавта, что позволяло иметь визуальный контроль за его состоянием. Одна из телевизионных камер передавала изображение пилота в анфас, а другая – сбоку .

Достижения отечественной науки в области освоения космического пространства позволили осуществить предсказания Артура Кларка. В конце 50-х годов прошлого века в СССР и США начали проводиться экспериментальные исследования возможностей использования искусственных спутников Земли в качестве радиоретрансляторов (активных и пассивных) в наземных системах связи. Теоретические разработки в области энергетических возможностей линий спутниковой связи позволили сформулировать тактико-технические требования к устройствам спутникового ретранслятора и наземных устройств, исходя из реальных характеристик технических средств, существовавших в то время .

Учитывая идентичность подходов, экспериментальные исследования в области создания линий спутниковой связи представим на примере США . Первый активный радиоретранслятор «Score» был запущен 18 декабря 1958 года на наклонную эллиптическую орбиту с высотой апогея 1481 км, перигея 177 км. Аппаратура спутника состояла из двух приемопередатчиков, работавших на частотах 132.435 и 132.095 МГц. Работа производилась в режиме замедленной ретрансляции. Запоминание сигнала, посланного наземной передающей станцией, производилась путем записи на магнитную ленту. В качестве источников питания применялись серебряно-цинковые аккумуляторы емкостью 45 ампер – час при напряжении 18 вольт. Продолжительность связи составляла приблизительно 4 мин за 1 оборот спутника. Производилась ретрансляция 1 телефонного или 7 телетайпных каналов. Срок службы спутника равнялся 34 дням. Спутник сгорел при входе в атмосферу 21 января 1959 года. Второй активный радиоретранслятор «Курьер» был запущен 4 октября 1960 года на наклонную эллиптическую орбиту с высотой апогея 1270 км и перигея 970 км. Аппаратура спутника состояла из 4 приемопередатчиков (частота 150 МГц для передачи команд и 1900 МГц для связи), устройства магнитной памяти и источников питания – солнечных элементов и химических батарей. В качестве первичного источника питания использовались кремниевые солнечные элементы в количестве 19 152 штук. В качестве буферного каскада применялись никель-кадмиевые батареи емкостью 10 ампер – час при напряжении 28-32 вольта. Продолжительность сеанса связи составляла 5 мин за один оборот спутника. Срок службы спутника составил 1 год. 10 июля 1962 года на наклонную эллиптическую орбиту с апогеем 5600 км и перигеем 950 км был запущен активный ретранслятор «Телстар», который предназначался для активной ретрансляции радиосигналов в реальном масштабе времени. Одновременно он ретранслировал или 600 симплексных телефонных каналов, или 12 дуплексных телефонных каналов, или один телевизионный канал. Во всех случаях работа производилась по способу частотной модуляции. Частоты связи: на линии спутник – Земля 4169,72 МГц, на линии Земля – спутник 6389,58 МГц. Продолжительность сеанса связи на линии США – Европа через этот спутник составляла около 2 часов в сутки. Качество передаваемых телевизионных изображений менялось от хорошего до отличного. По проекту предусматривался весьма значительный срок службы спутника –2 года, однако после четырех месяцев успешной работы отказала командная линия. Было установлено, что причинной отказа явились поверхностные повреждения вследствие действия радиации при прохождении спутником внутреннего радиационного пояса.

14 февраля 1963 года был запущен первый синхронный спутник системы «Синком» с параметрами орбиты: высота апогея 37 022 км, высота перигея 34185, период обращения 1426,6 минут. Рабочая частота на линии Земля – спутник равна 7360 МГц, на линии спутник – Земля 1820 МГц. В качестве первичного источника питания на спутнике использовались солнечные элементы в количестве 3840 штук общей мощностью 28 Вт при напряжении 27,5 вольт. Связь со спутником поддерживалась только 20 077 секунд, после чего наблюдения велись астрономическими методами.

23 апреля 1965 г. в СССР был запущен первый спутник связи «Молния-1». С запуском второго спутника связи «Молния-2» 14 октября 1965 г. началась регулярная эксплуатация линии дальней связи через ИСЗ. Позднее была создана система дальней космической связи «Орбита». Она состояла из сети наземных станций и искусственных спутников Земли «Молния», «Радуга», «Горизонт». Ниже, в главе 7, будет показано, что модификации спутников «Горизонт» продолжают функционировать и в XXI веке. Это говорит о высокой надежности отечественной техники по сравнению с зарубежной.

Первые станции спутниковой связи были построены, испытаны и введены в эксплуатацию в подмосковном г. Щелково и в Уссурийске. Кабельными и релейными линиями связи они соединялись соответственно с телецентрами и телефонными междугородными станциями Москвы и Владивостока.

Наиболее подходящей для оборудования земных станций спутниковой системы оказалась аппаратура тропосферной связи ТР-60/120, в которой, как известно, использовались передатчики большой мощности и высокочувствительные приемные устройства с малошумящими параметрическими усилителями. На ее основе разрабатывается приемно-передающий комплекс «Горизонт», устанавливаемый на наземных станциях первой линии спутниковой связи между Москвой и Владивостоком.

Специально были разработаны передатчики для связной и командно-измерительной линии, параметрические усилители с температурой шума 120 К для установки в подзеркальной кабине антенны, а также совершенно новое оборудование, обеспечивающее стыковку с местными телецентрами и междугородными телефонными станциями.

В те годы проектировщики земной станции, боясь влияния мощных передатчиков на приемники, устанавливали их на разных антеннах и в разных зданиях (приемном и передающем). Однако опыт использования одной общей антенны для приема и передачи, полученный на линиях тропосферной связи, позволил в дальнейшем перенести приемное оборудование на передающую антенну, что значительно упростило и удешевило эксплуатацию станций спутниковой связи.

В 1967 г. через спутник связи «Молния-1» создана разветвленная телевизионная сеть приемных земных станций «Орбита» с центральной передающей станцией под Москвой. Это позволило организовать первые каналы связи между Москвой и Дальним Востоком, Сибирью, Средней Азией, передавать программу Центрального телевидения в отдаленные районы нашей Родины и дополнительно охватить более 30 млн телезрителей.

Однако спутники «Молния» вращались вокруг Земли по вытянутым эллиптическим орбитам . Для слежения за ними антенны наземных приемных станций должны постоянно поворачиваться. Гораздо проще решают эту задачу спутники, вращающиеся по стационарной круговой орбите, которая находится в плоскости экватора на высоте 36 000 км. Они совершают один оборот вокруг Земли за 24 часа и поэтому кажутся наземному наблюдателю висящими неподвижно над одной точкой нашей планеты. Трех таких спутников достаточно для обеспечения связью всей Земли.

В 80-е годы прошлого века эффективно функционировали работающие на стационарных орбитах спутники связи «Радуга» и телевизионные спутники «Экран». Для приема их сигналов не нужны были сложные наземные станции. Телевизионные передачи с таких спутников принимаются прямо на несложные коллективные, и даже индивидуальные антенны.

В 1980-е годы началось развитие персональной спутниковой связи. При этой связи спутниковый телефон непосредственно соединяется со спутником, находящимся на околоземной орбите. Со спутника сигнал поступает на наземную станцию, откуда передается в обычную телефонную сеть. Число спутников, необходимое для стабильной связи в любой точке планеты, зависит от радиуса орбиты той или иной системы спутников.

Основной недостаток персональной спутниковой связи – ее относительная дороговизна по сравнению с сотовой связью. Кроме того, в спутниковые телефоны встраиваются передатчики большой мощности. Поэтому они считаются небезопасными для здоровья пользователей.

Самые надежные спутниковые телефоны работают в сети Инмарсат, созданной более 20 лет назад. Спутниковые телефоны системы Инмарсат представляют собой чемоданчик с откидной крышкой размером с первые портативные компьютеры. Крышка спутникового телефона по совместительству является и антенной, которую необходимо поворачивать по направлению к спутнику (на дисплее телефона отображается уровень сигнала). В основном такие телефоны используются на судах, поездах или большегрузных автомобилях. Каждый раз, когда необходимо позвонить или ответить на чей-то звонок, нужно будет устанавливать спутниковый телефон на какую-нибудь ровную поверхность, раскрывать крышку и крутить его, определяя направление максимального сигнала.

В настоящее время в общем балансе связи на спутниковые системы пока приходится примерно 3 % мирового трафика. Но потребности в спутниковых линиях продолжают расти, поскольку при дальности свыше 800 км спутниковые каналы становятся экономически более выгодными по сравнению с другими видами дальней связи.

На сегодняшний день существует два вида спутников: геостационарные и низкоорбитальные. Геостационарными называются спутники, находящиеся на геостационарной орбите.(Геостационарная орбита - это орбита, лежащая в плоскости экватора на высоте около 36 тыс. км над поверхностью Земли).

Спутник, находящийся на геостационарной орбите для земного наблюдателя кажется висящим неподвижно и это открывает возможности использования ИСЗ в качестве ретранслятора телевизионных передач. С произвольной точки земной поверхности, с которой виден геостационарный спутник, на него можно направлять электромагнитное излучение земного передатчика используются по возможности высокие частоты, порядка 75-100 Ггц (l 1 =3-4 мм) Применение более коротких длин волн ограничено сильным атмосферным поглощением в диапазоне 300 ГГц и выше Принятый на геостационарном спутнике на длине волныl 1 электромагнитный сигнал преобразуется в другую, более низкую частоту порядка 10 Ггц (l 2 = 3 см). Этот сигнал с помощью другой антенны спутника направляется на земную поверхность. Для облучения передатчиком спутника поверхности Земли, на спутнике не требуется антенна большого диаметра, так как это излучение должно быть "размазано" на большой площади, называемой зоной обслуживания. Важно, насколько спутник сохраняет свою геостационарную позицию на орбите. Если спутник дрейфует, то он выходит, частично или полностью, из поля зрения наземной приемной антенны. При этом телевизионный сигнал уменьшается, что проявляется в исчезновении изображения на экране телевизора и появления шума ("снега"). В таких случаях требуется корректировка ориентации наземной антенны - вручную или автоматически.

Геостационарные спутники выполняют на сегодняшний день множество задач, таких как: телекоммуникация, радиоместоопределение(системы навигации gps, глонасс и др.), главной задачей большинства геостационарных спутников является формирование изображений видимой земной поверхности. Спутниковые системы связи с геостационарными спутниками-ретрансляторами идеально подходят для решения таких задач, как организация телевизионного и звукового вещания на обширных территориях и предоставление высококачественных телекоммуникационных услуг абонентам в удаленных и труднодоступных регионах. Кроме того, с их помощью можно быстро создавать крупномасштабные корпоративные сети и резервировать наземные магистральные каналы связи большой протяженности. Также сейчас проводится создание мультисервисных сетей (объединяющих в едином пакете такие услуги, как передача данных, телефония, цифровое телевидение, видеоконференция и доступ в интернет) на основе технологии VSAT.Также важно подменить, что всего три геостационарных спутника способны охватить всю поверхность Земли. Но у геостационарных спутников также есть недостатки, наиболее важный из них: На геостационарной орбите нельзя располагать слишком большое количество спутников связи, так как иначе они начнут мешать работе друг другу. Следовательно, кроме геостационарных спутников, которые вскоре “заполонят” геостационарную орбиту нужно развивать и другие спутниковые системы-низкоорбитальные, что сейчас и происходит.Как правило, к низкоорбитальным системам спутниковой связи (ССС) (системы LEO) относят такие, для которых высота орбиты находится в пределах 700-1500 км, масса спутников до 500 кг, орбитальная группировка - от нескольких единиц до десятков спутников-ретрансляторов (СР). Низкоорбитальные системы позволяют обеспечить связь с терминалами, размещенными в полярных широтах, и практически не имеют альтернативы при организации связи в регионах со слаборазвитой инфраструктурой связи и низкой плотностью населения. Стоимость услуг подвижной связи низкоорбитальными системами оказывается в несколько раз дешевле аналогичных услуг, предоставляемых геостационарными системами за счет использования недорогих абонентских станций и менее дорогого космического сегмента. . Однако возникают сложности управления группировкой таких спутников и поддержания непрерывности связи.

И в заключения хочется сказать, что Современные оптико-телевизионные космические средства уже позволяют рассмотреть с орбиты предметы с размерами порядка метра и передать полученное изображение через спутники-ретрансляторы абонентам.

Доклад на тему:

Современная спутниковая связь, спутниковые системы.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1. Развитие спутниковой сети связи

2. Современное состояние спутниковой сети связи

3. Система спутниковой связи

4. Применение спутниковой связи

5. Технология VSAT

6. Глобальная спутниковая система связи Globalstar

Заключение

Введение

Современные реалии уже говорят о неизбежности замещения спутниковой связью привычные мобильные и тем более, стационарные телефоны. Новейшие технологии спутниковой связи предлагают действенные технико- и экономически выгодные решения для развития как вседоступных услуг связи и сетей непосредственного звукового, так и ТВ-вещания.

Благодаря выдающимся достижениям в области микроэлектроники спутниковые телефоны стали настолько компактными и надежными в использовании, что делаются все востребование у различных групп пользователей, а услуга проката спутниковых аппаратов является одной из самых востребованных услуг на рынке современной спутниковой связи. Существенные перспективы развития, очевидные плюсы перед иной телефонией, надёжность и гарантированная бесперебойность связи - всё это о спутниковых телефонах.

Спутниковая связь сегодня является единственным экономически выгодным решением предоставления услуг связи абонентам в зонах с низкой плотностью населения, что подтверждает ряд проведенных экономических исследований. Спутник является единственным технически реализуемым и окупаемым решением в том случае, если плотность населения ниже, чем 1,5 чел/км2.

Спутниковая связь обладает важнейшими достоинствами, необходимыми для построения крупномасштабных телекоммуникационных сетей. Во-первых, с ее помощью можно достаточно быстро сформировать сетевую инфраструктуру, охватывающую большую территорию и не зависящую от наличия или состояния наземных каналов связи. Во-вторых, использование современных технологий доступа к ресурсу спутниковых ретрансляторов и возможность доставки информации практически неограниченному числу потребителей одновременно значительно снижают затраты на эксплуатацию сети. Эти достоинства спутниковой связи делают ее весьма привлекательной и высокоэффективной даже в регионах с хорошо развитыми наземными телекоммуникациями.

Предварительные прогнозы развития систем персональной спутниковой связи показывают, что в начале XXI в число их абонентов составило примерно 1 млн. , а в течении следующего десятилетия - 3млн. В настоящее время число пользователей спутниковой системы Inmarsat составляет 40тыс.

В последние годы в России всё активнее внедряются современные виды и средства связи. Но, если сотовый радиотелефон уже стал привычным, то аппарат персональной спутниковой связи (спутниковый терминал) пока еще редкость. Анализ развития подобных средств связи показывает, что уже в скором будущем мы станем свидетелями повседневного применения систем персональной спутниковой связи (СПСС).

Близится время объединения наземных и спутниковых систем в глобальную систему связи. Персональная связь станет возможной в глобальном масштабе, т. е. будет обеспечена досягаемость абонента в любой точке мира путем набора его телефонного номера, не зависящего от местонахождения абонента. Но прежде, чем это станет реальностью, системы спутниковой связи должны будут успешно выдержать испытания и подтвердить заявленные технические характеристики и экономические показатели и процессе коммерческой эксплуатации. Что же касается потребителей, то, чтобы сделать правильный выбор, им придется научиться хорошо ориентироваться во множестве предложений.

Цели проекта:

1. Изучить историю спутниковой системы связи.

2. Ознакомиться с особенностями и перспективами развития и проектирование спутниковой связи.

3. Получить информацию о современной спутниковой связи.

Задачи проекта:

1. Проанализировать развитие спутниковой системы связи на всех ее этапах.

2. Получить полное представление о современной спутниковой связи.

1.Развитие спутниковой сети связи

В конце 1945 года мир увидел небольшую научную статью, которая посвящалась теоретическим возможностям улучшения связи (в первую очередь, расстояния между приемником и передатчиком) благодаря поднятию антенны на максимальную высоту. Использование искусственных спутников в качестве ретрансляторов радиосигналов стало возможным благодаря теории английского ученого Артура Кларка, который опубликовал заметку под названием «Внеземные ретрансляторы» в 1945 году. Он фактически предугадал новый виток в эволюции радиорелейной связи, предложив вывести ретрансляторы на максимально доступную высоту.

Теоретическими изысканиями заинтересовались американские ученые, которые разглядели в статье массу преимуществ от нового типа связи:

не нужно больше строить цепь наземных ретрансляторов;

одного спутника достаточно для обеспечения большой зоны покрытия;

возможность передачи радиосигнала в любую точку планеты вне зависимости от наличия телекоммуникационной инфраструктуры.

В итоге со второй половины прошлого века начались практические исследования и формирование сети спутниковой связи по всему миру. С ростом количества ретрансляторов на орбите внедрялись новые технологии, и совершенствовалось оборудование для спутниковой связи. Теперь данный способ обмена информацией стал доступен не только крупным корпорациям и военным компаниям, но и частным лицам.

Развитие спутниковых систем связи началось с запуска в космос первого аппарата «Эхо-1» (пассивный ретранслятор в виде металлизированного шара) в августе 1960 года. Позже были разработаны ключевые стандарты спутниковой связи (рабочие частотные диапазоны), которые широко используются во всем мире.

История развития спутниковой связи и основные виды связи

И стория развития С путниковой С истемы С вязи насчитывает пять этапов:

1957-1965 гг. Подготовительный период, который начался в октябре 1957 г. после запуска Советским Союзом первого в мире искусственного спутника Земли, а спустя месяц и второго. Это произошло в разгар «холодной войны» и стремительной гонки вооружений, поэтому, естественно, спутниковые технологии становились в первую очередь достоянием военных. Рассматриваемый этап характеризуется запуском ранних экспериментальных ИСЗ, в том числе и спутников связи, которые преимущественно выводились на низкие околоземные орбиты.

Первый геостационарный спутник-ретранслятор TKLSTAR был создан в интересах армии США и выведен на орбиту в июле 1962 года. В тот же период времени была разработана серия американских военных спутников связи SYN-СОМ (Synchronous Communications Satellite).

1965-1973 гг. Период развития глобальных ССС на основе геостационарных ретрансляторов. 1965 год ознаменован запуском в апреле геостационарного СР INTELSAT-1, положившего начало коммерческого использования спутниковой связи. Ранние спутники серии INTELSAT обеспечивали трансконтинентальную связь и в основном поддерживали магистральные каналы связи между небольшим количеством национальных шлюзовых земных станций, обеспечивающих интерфейс с национальными наземными сетями общего пользования.

Магистральные каналы обеспечивали соединения, по которым передавался телефонный трафик, ТВ сигналы и обеспечивалась телексная связь. В целом ССС Intelsat дополняла и резервировала существовавшие на тот момент подводные трансконтинентальные кабельные линии связи

1973-1982 гг. Этап широкого распространения региональных и национальных ССС. На этом этане исторического развития ССС была создана международная организация Inmarsat, развернувшая глобальную сеть связи Inmarsat, основной целью которой было обеспечение связи с морскими судами, находящимися в плавании. В дальнейшем Inmarsat распространила свои услуги на все разновидности подвижных пользователей.

1982-1990 гг. Период стремительного развития и распространения малых земных терминалов. В 80-е годы успехи в области техники и технологии ключевых элементов ССС, а также реформы по либерализации и демонополизации отрасли связи в ряде стран позволили использовать спутниковые каналы в корпоративных деловых сетях связи, получивших название VSAT.

Сети VSAT позволили устанавливать компактные земные станции спутниковой связи в непосредственной близости от пользовательских офисов, решив тем самым для огромного числа корпоративных пользователей проблему «последней мили», создали условия комфортного и оперативного обмена информацией, позволили разгрузить наземные сети общего пользования.Использование «интеллектуальных» спутников связи.

С первой половины 90-х годов ССС вступили в количественно и качественно новый этап своего развития.

Большое количество глобальных и региональных спутниковых сетей связи находились в стадии эксплуатации, производства или проектирования. Технология спутниковой связи стала областью значительного интереса и деловой активности. В этот период времени наблюдался взрывной рост быстродействия микропроцессоров общего назначения и объемов полупроводниковых запоминающих устройств при одновременном повышении надежности, а также уменьшении энергопотребления и стоимости этих компонентов.

Основные виды связи

Учитывая широкую область применения, я выделю наиболее распространенные разновидности связи, которые применяются в настоящее время в нашей стране и во всем мире:

радиорелейная;

высокочастотная;

почтовая;

спутниковая;

оптическая;

диспетчерская.

Каждому типу соответствует своя технология и комплекс необходимого оборудования для полноценного функционирования. Рассмотрю указанные категории более подробно.

Связь через спутник

История спутниковой связи начинается с конца 1945 года, когда английские ученые разработали теорию передачи радиорелейного сигнала через ретрансляторы, которые будут находиться на большой высоте (геостационарная орбита). Первые искусственные спутники начали запускаться с 1957 года.

Преимущества такого типа связи очевидны:

минимальное количество ретрансляторов (на практике хватает одного или двоих спутников для обеспечения качественной связи);

улучшение базовых характеристик сигнала (отсутствие помех, увеличение расстояния передачи, повышение качества);

увеличение площади покрытия.

Сегодня оборудование спутниковой связи - это сложный комплекс, который состоит не только из орбитальных ретрансляторов, но и базовых наземных станций, которые расположены в разных частях планеты.

2.Современное состояние спутниковой сети связи

Из всех многочисленных коммерческих проектов ПСС (подвижной спутниковой связи) в диапазоне ниже 1 ГГц реализована одна система Orbcomm, которая включает в себя 30 негеостационарных (НГСО) спутников, обеспечивающих покрытие Земли.

В связи с использованием относительно низких диапазонов частот система позволяет предоставлять на простые дешевые абонентские устройства услуги по низкоскоростной передаче данных, такие, как электронная почта, двусторонний пейджинг, услуги дистанционного контроля. Основными пользователями Orbcomm являются транспортные компании, для которых эта система обеспечивает экономически эффективное решение по осуществлению контроля и управления перевозки грузов.

Самым известным оператором на рынке услуг ПСС является Inmarsat. На рынке предлагается около 30 типов абонентских устройств как переносных, так и подвижных: для сухопутного, морского и воздушного использования, обеспечивающих передачу речи, факс и передачу данных со скоростью от 600 бит/c до 64 кбит/с. Конкуренцию для Inmarsat составляют три системы ПСС, в частности Globalstar, Iridium и Thuraya.

Первые две обеспечивают практически полное покрытие земной поверхности за счет использования больших группировок, соответственно состоящих из 40 и 79 НГСО спутников. Пре Thuraya стала глобальной в 2007 г. с запуском третьего геостационарного (ГС О) спутника, который покроет американский континент, где она сейчас недоступна. Все три системы предоставляют услуги телефонной связи и низкоскоростной передачи данных на приемные устройства, сравнимые по весу и размеру с мобильными телефонами GSM.

Развитие спутниковых систем связи играет значительную роль в формировании единого информационного пространства на территории государства и тесно связано с федеральными программами по ликвидации цифрового неравенства, развитию общенациональных инфраструктурных и социальных проектов. Самыми значимыми Федеральными целевыми программами на территории РФ являются проекты по "Развитию телерадиовещания" и "Устранению цифрового неравенстсва". Основные задачи проектов - развитие цифрового эфирного телевидения, сетей связи, систем массового широкополосного доступа к глобальным информационным сетям и предоставление мультисервисных услуг на передвижных и подвижных объектах. Помимо федеральных проектов, развитие спутниковых систем связи обеспечивает новые возможности для решения задач корпоративного рынка. Области применения спутниковых технологий и различных спутниковых систем связи стремительно расширяются с каждым годом.

Одним из ключевых факторов успешного развития спутниковых технологий в России является реализация Программы Развития орбитальной группировки спутников связи и вещания гражданского назначения, включая спутники на высокоэллиптической орбитах.

Развитие спутниковых систем связи

Основными драйверами развития отрасли спутниковой связи в России сегодня являются:

запуск сетей в Ка-диапазоне (на российских спутниках "ЭКСПРЕС-АМ5", "ЭКСПРЕС-АМ6"),

активное развитие сегмента передвижной и подвижной связи на различных транспортных платформах,

выход спутниковых операторов на массовый рынок,

развитие решений для организации магистральных каналов для сетей сотовой связи в Ка-диапазоне и М2М-приложений.

Общим трендом на мировом рынке спутниковых услуг является сремительный рост скоростей передачи данных, предоставляемых на спутниковых ресурсах, удовлетворяющий основным требованиям современных мультимедийных приложений и отвечающий развитию программного обеспечения и росту объемов передаваемых данных в корпоративном и частном сегментах.

В сетях спутниковой связи, работающих в Ка-диапазоне, наибольший интерес связан с развитием сервисов для частного и корпоративного сегмента в условиях снижения стоимости спутниковой емкости, реализуемой на спутниках Ка-диапазона с высокой пропускной способностью (High-Throughput Satellite - HTS).

Использование спутниковых систем связи

Системы спутниковой связи созданы для обеспечения потребностей связи и спутникового доступа в Интернет в любой точке мира. Они необходимы там, где требуется повышенная надежность и отказоустойчивость, используются для высокоскоростной передачи данных при организации многоканальной телефонной связи.

Специализированные системы связи имеют ряд преимуществ, но ключевым является возможность реализации качественной телефонии вне зон покрытия станциями сотовой связи.

Такие системы связи позволяют работать от автономного питания в течение длительного времени и находиться в режиме ожидания вызова, происходит это за счет невысоких энергетических показателей пользовательского оборудования, легкого веса и всенаправленной антенны.

В настоящее время существует множество различных систем спутниковой связи. У всех есть свои плюсы и минусы. Дополнительно каждый производитель предлагает пользователям индивидуальный набор услуг (Интернет, факс, телекс), определяет набор функций для каждой области покрытия, а так же рассчитывает стоимость спутникового оборудования и услуг связи. В России ключевыми являются: Инмарсат, Иридиум и Турайя.

Сферы использования ССС (Системы спутниковой связи): мореплавание, министерства и ведомства, органы управления государственных структур и учреждений, МЧС и спасательные подразделения.

Инмарсат (Inmarsat)

Первая в мире система мобильной спутниковой связи, предлагающая полный набор современных услуг пользователям по всему миру: на море, на суше и в воздухе.

Спутниковая система связи Инмарсат (Inmarsat) имеет ряд преимуществ:

зона покрытия - вся территория земного шара, кроме полярных областей

качество предоставляемых сервисов

конфиденциальность

дополнительные аксессуары (автомобильные комплекты, факсы и другое)

бесплатные входящие звонки

доступность в применении

он-лайн система проверки состояния счета (биллинг)

высокий уровень доверия у пользователей, проверена временем (более 25 лет существования и 210 тысяч пользователей по всему миру)

Основные сервисы системы спутниковой связи Инмарсат (Inmarsat) :

Электронная почта

Передача данных (в т.ч. высокоскоростная)

Телекс (для некоторых стандартов)

Иридиум (Iridium)

Первая в мире глобальная система спутниковой связи, которая работает в любой точке мира, включая районы Южного и Северного полюсов. Производитель предлагает универсальный сервис, доступный для бизнеса и жизни в любое время суток.

Спутниковая система связи Иридиум (Iridium) имеет ряд преимуществ:

зона покрытия - вся территория земного шара

низкие тарифные планы

бесплатные входящие звонки

Основные сервисы системы спутниковой связи Иридиум (Iridium):

Передача данных

Пейджинг

Турайя (Thuraya)

Спутниковый оператор, который предоставляет сервис на 35% территории земного шара. Сервисы, реализуемые в данной системе: спутниковые и GSM трубки, а так же спутниковые таксофоны. Недорогая мобильная связь для свободы общения и передвижений.

Спутниковая система связи Турайя (Thuraya) имеет ряд преимуществ:

компактный размер

возможность переключения между спутниковой и сотовой связью автоматически

невысокая стоимость сервисов и телефонных аппаратов

бесплатные входящие звонки

Основные сервисы системы спутниковой связи Турайя (Thuraya):

Электронная почта

Передача данных

3.Система спутниковой связи

Спутниковые ретрансляторы

Впервые годы исследований использовались пассивные спутниковые ретрансляторы (примеры - спутники «Эхо» и «Эхо-2»), которые представляли собой простой отражатель радиосигнала (часто - металлическая или полимерная сфера с металлическим напылением), не несущий на борту какого-либо приёмопередающего оборудования. Такие спутники не получили распространения.

Орбиты спутниковых ретрансляторов

Орбиты, на которых размещаются спутниковые ретрансляторы, подразделяют на три класса:

·экваториальные

·наклонные

·полярные

Важной разновидностью экваториальной орбиты является геостационарная орбита, на которой спутник вращается с угловой скоростью, равной угловой скорости Земли, в направлении, совпадающем с направлением вращения Земли

Наклонная орбита позволяет решить эти проблемы, однако, из-за перемещения спутника относительно наземного наблюдателя необходимо запускать не меньше трех спутников на одну орбиту, чтобы обеспечить круглосуточный доступ к связи.

Полярная - орбита, имеющая наклонение орбиты к плоскости экватора в девяносто градусов.

4.Система VSAT

Среди спутниковых технологий особенное внимание привлекает развитие технологий спутниковой связи типа VSAT (Very Small Aperture Terminal).

На основе VSAT оборудования возможно построение мультисервисных сетей, предоставляющих практически все современные услуги связи: доступ в Интернет; телефонную связь; объединение локальных сетей (построение VPN-сетей); передачу аудио-, видеоинформации; резервирование существующих каналов связи; сбор данных, мониторинг и удаленное управление промышленным объектами и многое другое.

Немного истории. Развитие сетей VSAT начинается с того, что был запущен первый спутник связи. В конце 60-х годов в ходе экспериментов со спутником АТС-1 была создана экспериментальная сеть, состоящая из 25 земных станций, спутниковой телефонной связи на Аляске. Фирма Linkabit, одна из первых создавшая VSAT Ku-диапазона, слилась с фирмой M/A-COM, которая в последствии стала ведущим поставщиком оборудования VSAT. Hughes Communications приобрела отделение у М/А-СОМ, преобразовав его в Hughes Network Systems. На данный момент компания Hughes Network Systems, является ведущим мировым поставщиком широкополосных сетей спутниковой связи. Сеть спутниковой связи на базе VSAT включает в себя три ключевых элемента: центральная управляющая станция (ЦУС), спутник-ретранслятор и абонентские VSAT терминалы.

Спутник-ретранслятор

Сети VSAT строятся на базе геостационарных спутников-ретрансляторов. Важнейшими характеристиками спутника являются мощность бортовых передатчиков и количество радиочастотных каналов (стволов или транспондеров) на нем. Стандартный ствол имеет полосу пропускания 36 МГц, что соответствует максимальной пропускной способности около 40 Мбит/с. В среднем, мощность передатчиков колеблется от 20 до 100 Ватт. В России в качестве примеров спутников-ретрансляторов можно привести спутники связи и вещания "Ямал". Они предназначены для развития космического сегмента ОАО "Газком" и были установлены в орбитальные позиции 49° в. д. и 90° в. д.

Абонентские VSAT терминалы

Абонентский VSAT терминал - это небольшая станция спутниковой связи с антенной диаметром от 0,9 до 2,4 м., предназначенная, главным образом, для надежного обмена данными по спутниковым каналам. Станция состоит из антенно-фидерного устройства, наружного внешнего радиочастотного блока и внутреннего блока (спутникового модема). Внешний блок представляет собой небольшой приемо-передатчик или только приемник. Внутренний блок обеспечивает сопряжение спутникового канала с терминальным оборудованием пользователя (компьютер, сервер ЛВС, телефон, факс и т.

5.Технология VSAT

Можно выделить два основных вида доступа к спутниковому каналу: двусторонний (дуплексный) и односторонний (симплексный, асимметричный или комбинированный).

При организации одностороннего доступа наряду со спутниковым оборудованием обязательно используется наземный канал связи (телефонная линия, оптоволокно, сотовые сети, радиоэзернет), который используется в качестве запросного канала (еще его называют обратным каналом).

Схема одностороннего доступа с использованием DVB-карты и телефонной линии в качестве обратного канала.

Схема двустороннего доступа с использованием оборудования HughesNet (компании Hughes Network Systems).

Сегодня в России несколько значимых операторов VSAT-сетей, которые обслуживают около 80 000 VSAT-станций. 33% таких терминалов находится в Центральном федеральном округе, по 13% - в Сибирском и Уральском федеральных округах, 11% - в Дальневосточном и по 5-8% - в остальных федеральных округах. Среди крупнейших операторов следует выделить:

6.Глобальная спутниковая система связи Globalstar

В России оператором спутниковой системы связи Globalstar является закрытое акционерное общество «ГлобалТел». Как эксклюзивный поставщик услуг глобальной подвижной спутниковой связи системы Globalstar, ЗАО «ГлобалТел» предоставляет услуги связи на территории всей Российской Федерации. Благодаря созданию компании ЗАО «ГлобалТел», у жителей России появилась еще одна возможность связаться через спутник из любой точки России практически с любой точкой мира.

Система Globalstar предоставляет спутниковую связь высокого качества для своих абонентов с помощью 48 рабочих и 8 запасных низкоорбитальных спутников, находящихся на высоте 1410 км. (876 миль) от поверхности Земли. Система обеспечивает глобальное покрытие практически всей поверхности земного шара между 700 Северной и Южной широты с расширением до 740. Спутники способны принимать сигналы до 80% поверхности Земли, т. е. практически из любой точки земного шара за исключением полярных областей и некоторых зон центральной части океанов. Спутники системы просты и надежны.

Сферы применения системы Globalstar

Система Globalstar разработана для предоставления высококачественных спутниковых услуг для широкого круга пользователей, включающих: голосовую связь, службу коротких сообщений, роуминг, позиционирование, факсимильную связь, передачу данных, мобильный Интернет.

Абонентами, пользующимися портативными и мобильными аппаратами, могут стать деловые и частные лица, работающие на территориях, которые не охвачены сотовыми сетями, либо специфика работы которых предполагает частые деловые поездки туда, где нет связи или плохое качество связи.

Система рассчитана на широкого потребителя: представители средств массовой информации, геологи, работники добычи и переработки нефти и газа, драгметаллов, инженеры-строители, энергетики. Сотрудники государственных структур России - министерств и ведомств (например, МЧС), могут активно использовать спутниковую связь в своей деятельности. Специальные комплекты для установки на транспортных средствах могут быть эффективны при использовании на коммерческом автотранспорте, на рыболовных и других видах морских и речных судов, на железнодорожном транспорте и т. д.

спутниковый связь глобальный подвижной

7. Системы подвижной спутниковой связи

Особенностью большинства систем подвижной спутниковой связи является маленький размер антенны терминала, что затрудняет прием сигнала. Для того, чтобы мощность сигнала, достигающего приемника, была достаточной, применяют одно из двух решений:

· Спутники располагаются на геостационарной орбите. Поскольку эта орбита удалена от Земли на расстояние 35786 км, на спутник требуется установить мощный передатчик. Этот подход используется системой Inmarsat (основной задачей которой является предоставление услуг связи морским судам) и некоторыми региональными операторами персональной спутниковой связи (например, Thuraya).

Спутниковый Интернет

Спутниковый Интернет -- способ обеспечения доступа к сети Интернет с использованием технологий спутниковой связи (как правило, в стандарте DVB-S или DVB-S2).

Варианты обеспечения доступа

Существует два способа обмена данными через спутник:

односторонний (one-way), иногда называемый также «асимметричным» -- когда для приема данных используется спутниковый канал, а для передачи -- доступные наземные каналы

двухсторонний (two-way), иногда называемый также «симметричным» -- когда и для приема, и для передачи используются спутниковые каналы;

Односторонний спутниковый Интернет

Односторонний спутниковый Интернет подразумевает наличие у пользователя какого-то существующего способа подключения к Интернету. Как правило это медленный и/или дорогой канал (GPRS/EDGE, ADSL-подключение там, где услуги доступа в Интернет развиты плохо и ограничены по скорости и т. п.). Через этот канал передаются только запросы в Интернет.

Двухсторонний спутниковый Интернет

Двухсторонний спутниковый Интернет подразумевает приём данных со спутника и отправку их обратно также через спутник. Этот способ является очень качественным, так как позволяет достигать больших скоростей при передаче и отправке, но он является достаточно дорогим и требует получения разрешения на радиопередающее оборудование (впрочем, последнее провайдер часто берет на себя). Высокая стоимость двустороннего интернета оказывается полностью оправданной за счет в первую очередь намного более надежной связи. В отличие от одностороннего доступа, двусторонний спутниковый интернет не нуждается ни в каких дополнительных ресурсах (не считая электропитания, конечно же).

Особенностью «двустороннего» спутникового доступа в Интернет является достаточная большая задержка на канале связи. Пока сигнал дойдет от абонента до спутника и от спутника до Центральной станции спутниковой связи -- пройдёт около 250 мс. Столько же нужно на путешествие обратно. Плюс неизбежные задержки сигнала на обработке и на то, чтобы пройти «по Интернету». В результате время пинга на двустороннем спутниковом канале составляет около 600 мс и более. Это накладывает некоторую специфику на работу приложений через спутниковый Интернет и особенно печально для заядлых геймеров.

Ещё одна особенность состоит в том, что оборудование различных производителей практически несовместимо друг с другом. То есть, если вы выбрали одного оператора, работающего на определенном типе оборудования (например, ViaSat, Hughes, Gilat EMS, Shiron и т. п.), то перейти вы сможете только к оператору, использующему такое же оборудование. Попытка реализовать совместимость оборудования различных производителей (стандарт DVB-RCS) была поддержана очень небольшим количеством компаний, и на сегодня является скорее ещё одной из «частных» технологий, чем общепринятым стандартом.

Оборудование для одностороннего спутникового Интернета

8. Недостатки спутниковой связи

Слабая помехозащищённость

Огромные расстояния между земными станциями и спутником являются причиной того, что отношение сигнал/шум на приемнике очень невелико (гораздо меньше, чем для большинства радиорелейных линий связи). Для того, чтобы в этих условиях обеспечить приемлемую вероятность ошибки, приходится использовать большие антенны, малошумящие элементы и сложные помехоустойчивые коды. Особенно остро эта проблема стоит в системах подвижной связи, так как в них есть ограничение на размер антенны и, как правило, на мощность передатчика.

Влияние атмосферы

На качество спутниковой связи оказывают сильное влияние эффекты в тропосфере и ионосфере.

Поглощение в тропосфере

Поглощение сигнала атмосферой находится в зависимости от его частоты. Максимумы поглощения приходятся на 22,3 ГГц (резонанс водяных паров) и 60 ГГц (резонанс кислорода). В целом, поглощение существенно сказывается на распространении сигналов с частотой выше 10 ГГц (то есть, начиная с Ku-диапазона). Кроме поглощения, при распространении радиоволн в атмосфере присутствует эффект замирания, причиной которому является разница в коэффициентах преломления различных слоев атмосферы.

Ионосферные эффекты

Задержка распространения сигнала

Проблема задержки распространения сигнала, так или иначе, затрагивает все спутниковые системы связи. Наибольшей задержкой обладают системы, использующие спутниковый ретранслятор на геостационарной орбите. В этом случае задержка, обусловленная конечностью скорости распространения радиоволн, составляет примерно 250 мс, а с учетом мультиплексирования, коммутации и задержек обработки сигнала общая задержка может составлять до 400 мс. Задержка распространения наиболее нежелательна в приложениях реального времени, например, в телефонной связи. При этом, если время распространения сигнала по спутниковому каналу связи составляет 250 мс, разница во времени между репликами абонентов не может быть меньше 500 мс. В некоторых системах (например, в системах VSAT, использующих топологию «звезда») сигнал дважды передается через спутниковый канал связи (от терминала к центральному узлу, и от центрального узла к другому терминалу). В этом случае общая задержка удваивается.

Заключение

Уже на самых ранних этапах создания спутниковых систем стала очевидной сложность предстоящей работы. Необходимо было изыскать материальные средства, приложить интеллектуальные усилия многих коллективов ученых, организовать труд на этапе практической реализации. Но, несмотря на это, в решение задачи активно включились транснациональные компании, имеющие свободный капитал. Более того, в настоящее время осуществляется не один, а несколько параллельных проектов. Фирмы-разработчики ведут упорную конкурентную борьбу за будущих потребителей, за мировое лидерство в области телекоммуникаций.

В настоящее время станции спутниковой связи объединяются в сети передачи данных. Объединение группы территориально-распределенных станций в сеть позволяет обеспечить пользователям широкий спектр услуг и возможностей, а также эффективно использовать ресурсы спутника. В таких сетях обычно имеется одна или несколько управляющих станций, которые обеспечивают работу земных станций как в обслуживаемом администратором, так и в полностью автоматическом режиме.

Преимущество спутниковой связи основано на обслуживании географически удаленных пользователей без дополнительных расходов на промежуточное хранение и коммутацию.

ССС постоянно и ревниво сравниваются с волоконно-оптическими сетями связи. Внедрение этих сетей ускоряется в связи с быстрым технологическим развитием соответствующих областей волоконной оптики, что заставляет задаться вопросом о судьбе ССС. Например, разработка и планирование, главное, внедрение конкатенирующего (составного) кодирования резко уменьшает вероятность возникновения неисправленной побитовой ошибки, что, в свою очередь, позволяет преодолеть главную проблему ССС - туман и дождь.

Список использованных источников

1 Баранов В. И. Стечкин Б. С. Экстремальные комбинаторные задачи и их

приложения, М.: Наука, 2000 г, с. 198.

2 Бертсекас Д. Галлагер Р. Сети передачи данных. М.: Мир, 2000 г, с. 295.

3 Блэк Ю. Сети ЭВМ: протоколы, стандарты, интерфейсы, М.: Мир, 2001 г, с. 320.

4 Большова Г. "Спутниковая связь в России: "Памир", Iridium, Globalstar ..." «Сети» - 2000 - №9. - с. 20-28.

5 Ефимушкин В. А. Технические аспекты систем спутниковой связи "Сети" - 2000 - №7. - с. 19-24.

6 Невдяев Л. М. Современные технологии спутниковой связи // "Вестник Связи" - 2000 - № 12. - с. 30-39.

7 Невдяев Л. М. Одиссея на средних высотах «Сети» - 2000 - №2. - с. 13-15.

8 НПЦ "Элсов", Протокол по организации и логике работы спутниковой сети передачи данных "Банкир". - 2004, с. 235.

9 Смирнова А. А. Корпоративные системы спутниковой и КВ связи Москва, 2000 г., с

10 Смирнова А. А. Персональная спутниковая связь, Том 64, Москва, 2001г., с

Размещено на Allbest.ru

Подобные документы

    Передача цифровых данных по спутниковому каналу связи. Принципы построения спутниковых систем связи. Применение спутниковой ретрансляции для телевизионного вещания. Обзор системы множественного доступа. Схема цифрового тракта преобразования ТВ сигнала.

    реферат , добавлен 23.10.2013

    История развития спутниковой связи. Абонентские VSAT терминалы. Орбиты спутниковых ретрансляторов. Расчет затрат по запуску спутника и установке необходимого оборудования. Центральная управляющая станция. Глобальная спутниковая система связи Globalstar.

    курсовая работа , добавлен 23.03.2015

    Вопросы построения межгосударственной корпоративной системы спутниковой связи и ее показатели. Разработка сети связи от Алматы до прямых международных каналов связи через Лондон. Параметры спутниковой линии, радиорелейной линии, зоны обслуживания IRT.

    дипломная работа , добавлен 22.02.2008

    Принципы построения территориальной системы связи. Анализ способов организации спутниковой связи. Основные требования к абонентскому терминалу спутниковой связи. Определение технических характеристик модулятора. Основные виды манипулированных сигналов.

    дипломная работа , добавлен 28.09.2012

    Особенности построения спутниковой линии связи, методы коммутации и передачи данных. Описание и технические параметры космических аппаратов, их расположение на геостационарных орбитах. Расчет энергетического баланса информационного спутникового канала.

    дипломная работа , добавлен 04.10.2013

    Обмен радиовещательных и телевизионных программ. Размещение наземных ретрансляторов. Идея размещения ретранслятора на космическом аппарате. Особенности системы спутниковой связи (ССС), ее преимущества и ограничения. Космический и наземный сегменты.

    реферат , добавлен 29.12.2010

    Общие сведения о системах персональной спутниковой связи. Ознакомление с развитием российской государственной спутниковой группировки и программой запусков космических аппаратов. Характеристики космических и земных станций передачи и приема сигналов.

    презентация , добавлен 16.03.2014

    Связь как отрасль хозяйства, обеспечивающая прием и передачу информации. Особенности и устройство телефонной связи. Услуги спутниковой связи. Сотовая связь как один из видов мобильной радиосвязи. Передача сигнала и соединение с помощью базовой станции.

    презентация , добавлен 22.05.2012

    Расчет пролёта радиорелейной линии. Выбор оптимальных высот подвеса антенн. Ухудшения связи, вызванные дождем и субрефракцией радиоволн. Энергетический расчет линии "вниз" и "вверх" для спутниковой системы связи. Коэффициент усиления антенны приемника.

    курсовая работа , добавлен 28.04.2015

    Разработка модели чрезвычайной ситуации. Организация связи с оперативной группой и группой ликвидации для осуществления аварийно-спасательных работ. Выбор спутниковой связи, ее преимущества и недостатки. Пропускная способность канала связи с помехами.

В 1945 году в статье «Внеземные ретрансляторы» («Extra-terrestrial Relays»), опубликованной в октябрьском номере журнала «Wireless World», английский учёный, писатель и изобретательАртур Кларк предложил идею создания системы спутников связи на геостационарных орбитах, которые позволили бы организовать глобальную систему связи.

Впоследствии Кларк на вопрос, почему он не запатентовал изобретение (что было вполне возможно), отвечал, что не верил в возможность реализации подобной системы при своей жизни, а также считал, что подобная идея должна приносить пользу всему человечеству.

Первые исследования в области гражданской спутниковой связи в западных странах начали появляться во второй половине 50-х годов XX века. В США толчком к ним послужили возросшие потребности в трансатлантической телефонной связи.

Почтовый конверт, посвященный 5-ти летию запуска первого спутника Земли

В 1957 году в СССР был запущен первый искусственный спутник Земли с радиоаппаратурой на борту.

Воздушный шар «Эхо-1»

12 августа 1960 года специалистами США был выведен на орбиту высотой 1500 км надувной шар. Этот космический аппарат назывался «Эхо-1». Его металлизированная оболочка диаметром 30 м выполняла функции пассивного ретранслятора.

Инженеры работают над первым в мире коммерческим спутником связи Early Bird

20 августа 1964 года 11 стран подписали соглашение о создании международной организации спутниковой связи Intelsat (International Telecommunications Satellite organization), но СССР в их число не входил по политическим причинам. 6 апреля 1965 года в рамках этой программы был запущен первый коммерческий спутник связи Early Bird («ранняя пташка», произведенный корпорацией COMSAT.

По сегодняшним меркам спутник Early Bird (INTELSAT I ) обладал более чем скромными возможностями: обладая полосой пропускания 50 МГц, он мог обеспечивать до 240 телефонных каналов связи. В каждый конкретный момент времени связь могла осуществляться между земной станцией в США и только одной из трёх земных станций в Европе (в Великобритании, Франции или Германии), которые были соединены между собой кабельными линиями связи.

В дальнейшем технология шагнула вперед, и спутник INTELSAT IX уже обладал полосой пропускания 3456 МГц .

В СССР долгое время спутниковая связь развивались только в интересах Министерства Обороны СССР. В силу большей закрытости космической программы развитие спутниковой связи в социалистических странах шло иначе чем в западных странах. Развитие гражданской спутниковой связи началось соглашением между 9 странами социалистического блока о создании системы связи «Интерспутник» которое было подписано только в 1971 году .

Первый искусственный спутник земли.

Запуск первого в мире искусственного спутника Земли был осуществлен в Советском Союзе 4 октября 1957 г. в 22 ч. 28 мин. 34 с по московскому времени. Впервые в истории сотни миллионов людей могли наблюдать в лучах восходящего или заходящего солнца перемещающуюся по темному небосводу искусственную звезду, созданную не богами, а руками человека. И мировое сообщество восприняло это событие как величайшее научное достижение.

Первые ИСЗ с спутниковой связью.

Сталин 13 мая 1946 г. подписал постановление о создании в СССР ракетной отрасли науки и промышленности. В его развитие в августе 1946 г. Сергея Королева (академика с 1958 г.) назначили главным конструктором баллистических ракет дальнего действия. Тогда никто из нас не предвидел, что, работая с ним, мы будем участниками запуска первого в мире ИСЗ, а вскоре после этого и первого полста человек в Космос - Юрия Гагарина.

В январе 1956 г. было подготовлено и 30 января подписано постановление Правительства о создании неориентированного ИСЗ под секретным шифром «Объект Д» массой 1000‑1400 кг с аппаратурой для научных исследований массой 200‑300 кг. К июлю 1956 г. был закончен проект первого ИСЗ, излучения Солнца, магнитных полей, космических лучей, теплового режима спутника, торможения его в верхних слоях атмосферы, продолжительности существования на орбите, и т. д.

К концу 1956 г. выяснилось, что сроки создания ИСЗ буду сорваны из-за трудностей изготовления надежной научной аппаратуры. Тем не менее, проект «Объекта Д» был одобрен спецкомитетом Совета Министров СССР. А ранее, 12 февраля 1955 г. в полупустыне, в районе станции Тюратам, силами армии под командованием генерала Шубникова началось строительство научно-исследовательского и испытательного полигона № 5 (с 1961 г. это место известно как космодром Байконур).

В течение 1955‑1956 гг. было закончено изготовление первого технологического комплекса ракеты насителя Р‑7, проведены ее испытания на Ленинградском металлическом заводе совместно с реальной стартовой системой. На огневых стендах под Загорском (ныне город Пересвет) начали огневые испытания отдельных блоков ракеты. Под руководством Н. Пилюгина проводили моделирование и комплексную отработку системы управления. (высота ракеты насителя Р-7 составляет 342,2 метра)

Запустить ракету в космос пытались 4 раза но из-за збоев в апаратуре и ненадежности оболочки ракеты, Королевым был предложен упрощенный вариант. 17 сентября 1957 г. на полигон прибыла ракета-носитель 8К71ПС (изделие М1‑ПС). Ее существенно облегчили по сравнению со штатными ракетами. Макетная головная часть была снята и заменена переходником «под спутник». С центрального блока сняли всю аппаратуру системы радиоуправления - точность ведь не требовалась. Сняли одну из систем телеметрии. Упростили автоматику выключения двигателя центрального блока. Таким образом, стартовая масса ракеты была облегчена на 7 т по сравнению с первыми образцами.

4 октября 1957 г. в 22 ч. 28 мин. 3 с по московскому времени был осуществлен старт. Через 295,4 с спутник и центральный блок ракеты-носителя вышли на орбиту. Впервые была достигнута первая космическая скорость, рассчитанная основателем классической физики и закона всемирного тяготения англичанином Исааком Ньютоном (1643‑1727 гг.). Она составляла для первого ИСЗ 7780 м/с. Наклонение орбиты спутника равнялось 65,1 о , высота перигея 228 км, высота апогея - 947 км, период обращения 96,17 мин

когда на полигоне приняли ставшие тут же известными всему человечеству сигналы «БИП‑БИП‑БИП», так началось существование спутниковой связи.

Первый спутник существовал 92 дня (до 4 января 1958 г.). За это время он совершил 1440 оборотов, центральный блок работал 60 дней: он наблюдался простым глазом как звезда 1-й величины.