Домой / Работа в Интернете / Оборудование вч обработки. Как шифровалась связь: технологии защиты в годы войны. Правительственная "ВЧ связь" в годы Великой Отечественной войны

Оборудование вч обработки. Как шифровалась связь: технологии защиты в годы войны. Правительственная "ВЧ связь" в годы Великой Отечественной войны

Третий

Второй

Первый

Схема защиты трансформатора , в которой имеется дифференциальная и газовая защиты (ДЗ), реагирующие на отключение трансформатора с двух сторон и максимальная токовая защита (СЗ), которая должна производить отключение только с одной стороны.

При составлении принципиальной схемы релейной защиты в свернутом виде может быть не обнаружена электрическая связь цепей отключения двух выключателей. Из развернутой схемы (Схема 1)следует, что при такой связи (поперечная цепь) неизбежна ложная цепь. Необходимы два оперативных контакта у защитных реле (Схема 2), действующие на два выключателя или разделительное промежуточное реле (Схема 3).

Рис. – Схема защиты трансформатора: 1 – неправильная; 2,3 – правильные

Неразделенные цепи высшего и низшего напряжения трансформатора.

Из рисунка (1) видна невозможность независимого отключения одной из сторон трансформатора без отключения другой.

Указанная ситуация исправляется включением промежуточного реле КL.

Рис. – Схемы защиты трансформатора: 1 – неправильная; 2 – правильная

Защиты генератора и трансформатора блока на электростанции действуют, как и требуется, на отключение выключателя и автомата гашения поля через разделительные промежуточные реле КL1 и КL2, но реле присоединены к разным секциям шинок питания, т.е. через разные предохранители.

Ложная цепь, показанная стрелками, образовалась через лампу контроля HL предохранителей в результате перегорания предохранителя FU2.

Рис. – Образование ложной цепи при перегорании предохранителя

1, 2, 3 – оперативные контакты реле

Схемы с питанием цепей вторичных соединений оперативным постоянным и переменным током

При хорошо изолированных от земли полюсах источника питания замыкание на землю в одной какой-либо точке цепи вторичных соединений обычно не влечет за собой вредных последствий. Однако второе замыкание на землю может вызвать ложное включение или отключение, неправильную сигнализацию и др. Профилактическими мерами в этом случае могут быть:

а) сигнализация о первом замыкании на землю в одном из полюсов; б) двухполюсное (двухстороннее) отделение элементов цепей управления – практически не применяется из-за сложности.

При изолированных полюсах (Рис.) заземление в точке а при разомкнутых замыкающих контактах 1 еще не вызовет ложного действия катушки командного органа К, но как только появится второе повреждение изоляции на землю в разветвленной сети положительного полюса, неминуема ложная работа аппарата, так как контакт 1 оказывается зашунтированным. Вот почему необходима сигнализация о замыкании на землю в оперативных цепях, и прежде всего на полюсах источника питания.



Рис. – Ложное срабатывание аппарата при втором замыкании на землю

Однако в сложных цепях с большим числом последовательно включенных оперативных контактов такая сигнализация может и не выявить возникшего замыкания на землю (Рис.).

Рис. – Неэффективность контроля изоляции в сложных цепях

При появлении заземления между контактами в точке а сигнализация невозможна.

В практике эксплуатации автоматических установок со слаботочной аппаратурой (до 60 В) прибегают иногда к намеренному заземлению одного из полюсов, например положительного (он более запыляется и подвержен электролитическим явлениям, т.е. и без того имеет ослабленную изоляцию). Это облегчает обнаружение и ликвидацию аварийного очага. В таком случае рекомендуется подсоединять катушку цепей управления одним концом к тому полюсу, который заземлен.

Все сказанное о питании цепей на постоянном оперативном токе, может быть отнесено и к оперативному переменному току с питанием цепей линейным напряжением. При этом следует учесть вероятность ложной работы (из-за емкостных токов) и резонансных явлений. Поскольку предусмотреть условия надежной работы в этом случае затруднительно, то иногда применяются вспомогательные изолирующие промежуточные трансформаторы с заземлением одного из зажимов на вторичной стороне.

Как видно из схемы, в этом случае при повреждении изоляции на землю в точке 2 перегорает предохранитель FU1 и замыкание на землю в точке 1 не вызывает ложного включения контактора К.

Схема включения конденсаторов с разделительными диодами

Высокочастотная (ВЧ) связь по линиям высокого напряжения получила значительное распространение во всех странах. В Украине этот вид связи широко используется в энергосистемах для передачи информации различного характера. Высокочастотные каналы используются для передачи сигналов релейной защиты линий, телеотключения выключателей, телесигнализации, телеуправления, телерегулирования и телеизмерения, для диспетчерской и административно-хозяйственной телефонной связи, а также для передачи данных.

Каналы связи по линиям электропередачи дешевле и надежнее каналов по специальным проводным линиям, так как не расходуются средства на сооружение и эксплуатацию собственно линии связи, а надежность линии электропередачи значительно выше надежности обычных проводных линий. Осуществление высокочастотной связи по линиям электропередачи связано с особенностями, не встречающимися в проводной связи.

Для подключения аппаратуры связи к проводам линий электропередачи необходимы специальные устройства обработки и присоединения, позволяющие отделить высокое напряжение от слаботочной аппаратуры и осуществить тракт для передачи ВЧ сигналов (рис. 1).

Рис. – Присоединение высокочастотной аппаратуры связи к линиям высокого напряжения

Одним из основных элементов схемы присоединения аппаратуры связи к линиям электропередачи является конденсатор связи высокого напряжения. Конденсатор связи, включаемый на полное напряжение сети, должен обладать достаточной электрической прочностью. Для лучшего согласования входного сопротивления линии и устройства присоединения емкость конденсатора должна быть достаточно большой. Выпускаемые сейчас конденсаторы связи дают возможность иметь емкость присоединения на линиях любого класса по напряжению не меньше 3000 пФ, что позволяет получить устройства присоединения с удовлетворительными параметрами. Конденсатор связи подключают к фильтру присоединения, который заземляет нижнюю обкладку этого конденсатора для токов промышленной частоты. Для токов высокой частоты фильтр присоединения совместно с конденсатором связи согласует сопротивление высокочастотного кабеля с входным сопротивлением линии электропередачи и образует фильтр для передачи токов высокой частоты от ВЧ кабеля в линию с малыми потерями. В большинстве случаев фильтр присоединения с конденсатором связи образуют схему полосового фильтра, пропускающего определенную полосу частот.

Ток высокой частоты, проходя через конденсатор связи по первичной обмотке фильтра присоединения на землю, .наводит во вторичной обмотке L2 напряжение, которое через конденсатор С1 и соединительную линию попадает на вход аппаратуры связи. Ток промышленной частоты, проходящий через конденсатор связи, мал (от десятков до сотен миллиампер), и падение напряжения на обмотке фильтра присоединения не превышает нескольких вольт. При обрыве или плохом контакте в цепи фильтра присоединения он может оказаться под полным напряжением линии, и поэтому в целях безопасности все работы на фильтре производят при заземлении нижней обкладки конденсатора специальным заземляющим ножом.

Согласованием входного сопротивления ВЧ аппаратуры связи и линии достигают минимальных потерь энергии ВЧ сигнала. Согласование с воздушной линией (ВЛ), имеющей сопротивление 300–450 Ом, не всегда удается выполнить полностью, так как при ограниченной емкости конденсатора связи фильтр с характеристическим сопротивлением со стороны линии, равным характеристическому сопротивлению ВЛ, может иметь узкую полосу пропускания. Для получения.нужной полосы пропускания в ряде случаев приходится допускать повышенное (до 2 раз) характеристическое сопротивление фильтра со стороны линии, мирясь с несколько большими потерями вследствие отражения. Фильтр присоединения, устанавливаемый у конденсатора связи, соединяют с аппаратурой высокочастотным кабелем. К одному кабелю может быть подключено несколько высокочастотных аппаратов. Для ослабления взаимных влияний между ними применяют разделительные фильтры.

Каналы системной автоматики – релейной защиты и телеотключения, которые должны быть особо надежны, требуют обязательного применения разделительных фильтров для отделения других каналов связи, работающих через общее устройство присоединения.

Для отделения ВЧ тракта передачи сигнала от оборудования высокого напряжения подстанции, которое может иметь низкое сопротивление для высоких частот канала связи, в фазный провод линии высокого напряжения включается высокочастотный заградитель. Высокочастотный заградитель состоит из силовой катушки (реактора), по которой проходит рабочий ток линии, и элемента настройки, присоединяемого параллельно катушке. Силовая катушка заградителя с элементом настройки образуют двухполюсник, который имеет достаточно высокое сопротивление на рабочих частотах. Для тока промышленной частоты 50 Гц заградитель имеет очень малое сопротивление. Находят применение заградители, рассчитанные на запирание одной или двух узких полос (одно- и двухчастотные заградители) и одной широкой полосы частот в десятки и сотни килогерц (широкополосные заградители). Последние получили наибольшее распространение, несмотря на меньшее сопротивление в полосе заграждения по сравнению с одно- и двухчастотными. Эти заградители дают возможность запирать частоты нескольких каналов связи, подключенные к одному и тому же проводу линии. Высокое сопротивление заградителя в широкой полосе частот можно обеспечить тем легче, чем больше индуктивность реактора. Получить реактор с индуктивностью в несколько миллигенри сложно, так как это приводит к значительному увеличению размеров, массы и стоимости заградителя. Если ограничить активное сопротивление в по­лосе запираемых частот до 500–800 Ом, что достаточно для большинства каналов, то индуктивность силовой катушки может быть не более 2 мГ.

Заградители выпускаются с индуктивностью от 0,25 до 1,2 мГ на рабочие токи от 100 до 2000 А. Рабочий ток заградителя тем выше, чем выше напряжение линии. Для распределительных сетей выпускают заградители на 100–300 А, а для линий 330 кВ и выше наибольший рабочий ток заградителя 2000 А.

Различные схемы настройки и необходимый диапазон запираемых частот получают, используя конденсаторы, дополнительные катушки индуктивности и резисторы, имеющиеся в элементе настройки заградителя.

Присоединение к линии можно осуществить различными способами. При несимметричной схеме ВЧ аппаратуру включают между проводом (или несколькими проводами) и землей по схемам «фаза – земля» или «две фазы – земля». При симметричных схемах ВЧ аппаратуру подключают между двумя или несколькими проводами линий («фаза – фаза», «фаза – две фазы»). На практике применяют схему «фаза – фаза». При включении аппаратуры между проводами разных линий используют лишь схему «фаза – фаза разных линий».

Для организации ВЧ каналов по линиям высокого напряжения применяют диапазон частот 18–600 кГц. В распределительных сетях используют частоты, начиная от 18 кГц, на магистральных линиях 40–600 кГц. Для получения удовлетворительных параметров ВЧ тракта на низких частотах необходимы большие значения индуктивностей силовых катушек заградителей и емкостей конденсаторов связи. Поэтому нижняя граница по частоте ограничена параметрами устройств обработки и присоединения. Верхняя граница частотного диапазона определяется допустимым значением линейного затухания, которое растет с увеличением частоты.

1. ВЫСОКОЧАСТОТНЫЕ ЗАГРАДИТЕЛИ

Схемы настройки заградителей . Высокочастотные заградители обладают высоким сопротивлением для токов рабочей частоты канала и служат для отделения шунтирующих ВЧ тракт элементов (подстанций и ответвлений), которые при отсутствии заградителей могут привести к увеличению затухания тракта.

Высокочастотные свойства заградителя характеризуются полосой заграждения, т. е. полосой частот, в которой сопротивление заградителя не меньше некоторого допустимого значения (обычно 500 Ом). Как правило, полоса заграждения определяется по допустимому значению активной составляющей сопротивления заградителя, но иногда по допустимому значению полного сопротивления.

Заградители отличаются по значениям индуктивностей, допустимым токам силовых катушек и по схемам настройки. Применяются одно- и двухчастотные резонансные или притуплённые схемы настройки и широкополосные схемы (по схеме полного звена и полузвена полосового фильтра, а также по схеме полузвена фильтра верхних частот). Заградители с одно- и двух-частотными схемами настройки часто не дают возможности заградить нужную полосу частот. В этих случаях применяют заградители с широкополосными схемами настройки. Такие схемы настройки применяют при организации каналов защиты и связи, имеющих общую аппаратуру присоединения.

При протекании тока через катушку заградителя возникают электродинамические усилия, действующие вдоль оси катушки, и радиальные, стремящиеся разорвать виток. Осевые усилия неравномерны по длине катушки. Большие усилия возникают на краях катушки. Поэтому шаг витков на краю делают больше.

Электродинамическая стойкость заградителя определяется максимальным током КЗ, который он выдерживает. В заградителе КЗ-500 при токе 35 кА возникают осевые усилия в 7 тонн (70 кН).

Защита элементов настройки от перенапряжений . Волна перенапряжения, возникающая на воздушной линии, попадает на заградитель. Напряжение волны распределяется между конденсаторами элемента настройки и входным сопротивлением шин подстанции. Силовая катушка представляет собой большое сопротивление для волны с крутым фронтом и при рассмотрении процессов, связанных с перенапряжениями, ее можно не учитывать. Для защиты конденсаторов настройки и силовой катушки параллельно силовой катушке подсоединяют разрядник, ограничивающий напряжение на элементах заградителя до безопасного для них значения. Пробивное напряжение разрядника по условиям деионизации искрового промежутка должно быть в 2 раза больше сопровождающего напряжения, т. е. падения напряжения на силовой катушке от максимального тока кз U сопр =I к.з. ωL.

При большом предразрядном времени пробивное напряжение конденсаторов значительно больше пробивного напряжения разрядников; при малом (менее 0,1 мкс) пробивное напряжение конденсаторов становится меньше пробивного напряжения разрядника. Поэтому необходимо задерживать рост напряжения на конденсаторах до момента срабатывания разрядника, что достигают включением добавочной катушки индуктивности L д последовательно с конденсатором (рис. 15). После пробоя разрядника напряжение на конденсаторе поднимается медленно и дополнительный разрядник, включенный параллельно конденсатору, хорошо его защищает.

Рис. – Схемы высокочастотных заградителей с устройством защиты от перенапряжений: а) одночастотная; б) двухчастотная

2. КОНДЕНСАТОРЫ СВЯЗИ

Общие сведения . Конденсаторы связи служат для подключения ВЧ аппаратуры связи, телемеханики и защиты к линиям высокого напряжения, а также для отбора мощности и измерения напряжения.

Сопротивление конденсатора обратно пропорционально частоте напряжения, прикладываемого к нему, и емкости конденсатора. Реактивное сопротивление конденсатора связи для токов промышленной частоты, следовательно, значительно больше, чем для частоты 50 – 600 кГц каналов связи телемеханики и защиты (в 1000 раз и более), что позволяет с помощью этих конденсаторов разделить токи высокой и промышленной частоты и предотвратить попадание высокого напряжения на электроустановки. Токи промышленной частоты отводятся на землю через конденсаторы связи, минуя аппаратуру ВЧ. Конденсаторы связи рассчитаны на фазное (в сети с заземленной нейтралью) и на линейное напряжение (в сети с изолированной нейтралью).

Для отбора мощности применяют специальные конденсаторы отбора, включаемые последовательно с конденсатором связи.

В названиях элементов конденсаторов буквы обозначают последовательно характер применения, вид заполнителя, исполнение; цифры – номинальное фазное напряжение и емкость. СМР – связи, маслонаполненный, с расширителем; СММ – связи, маслонаполненный, в металлическом кожухе. Для различных напряжений конденсаторы связи комплектуют из отдельных элементов, соединенных последовательно. Элементы конденсаторов СМР-55/√3-0,0044 рассчитаны на нормальную работу при напряжении 1,1 U иом, элементы СМР-133/√3-0,0186 – на 1,2U иом. Емкость конденсаторов для классов изоляции 110, 154, 220, 440 и 500 кВ принимается с допуском от -5 до +10%.

3. ФИЛЬТРЫ ПРИСОЕДИНЕНИЯ

Общие сведения и расчетные зависимости. Высокочастотную аппаратуру подключают к конденсатору не непосредственно через кабель, а через фильтр присоединения, который компенсирует реактивное сопротивление конденсатора, согласовывает волновые сопротивления линии и ВЧ кабеля, заземляет нижнюю обкладку конденсатора, чем образуется путь для токов промышленной частоты и обеспечивается безопасность работ.

При обрыве цепи линейной обмотки фильтра на нижней обкладке конденсатора появляется фазное напряжение по отношению к земле. Поэтому все переключения в цепи линейной обмотки фильтра присоединения производят при включенном заземляющем ноже.

Фильтр ОФП-4 (рис. ,) предназначен для работы на линиях 35, 110 и 220 кВ по схеме «фаза – земля» с конденсатором связи 1100 и 2200 пФ и с кабелем, имеющим волновое сопротивление 100 Ом. Фильтр имеет три частотных диапазона. Для каждого диапазона имеется отдельный воздушный трансформатор, залитый изоляционной массой.

Рис. – Принципиальная схема фильтра-присоединения ОФП-4

6. ОБРАБОТКА ГРОЗОЗАЩИТНЫХ ТРОСОВ, АНТЕННЫ

Грозозащитные тросы линий высокого напряжения могут быть также использованы в качестве каналов передачи информации. Тросы изолированы от опор с целью экономии электроэнергии, при атмосферных перенапряжениях они заземляются через пробиваемые искровые промежутки. Стальные тросы имеют высокое затухание для сигналов высокой частоты и позволяют передавать информацию лишь на коротких линиях на частотах не более 100 кГц. Биметаллические тросы (стальные тросы с алюминиевым покрытием), тросы алюмовелд (из скрученных сталеалюминевых проволок), одноповивные тросы (один повив – алюминиевые проволоки, остальные повивы – стальные) дают возможность организовать каналы связи с малыми затуханиями и уровнями помех. Помехи меньше, чем в каналах связи по фазным проводам, а аппаратура ВЧ обработки и присоединения проще и дешевле, так как токи, текущие по тросам, и напряжения на них невелики. Биметаллические провода дороже стальных, поэтому их применение может быть оправдано, если ВЧ каналы по фазным проводам не могут быть выполнены. Это может быть на сверхдальних, а иногда на дальних электропередачах.

Каналы по тросам можно включать по схемам «трос – трос», «трос – земля» и «два троса – земля». На ВЛ переменного тока тросы меняют местами через каждые 30 – 50 км для уменьшения в них наводок токов промышленной частоты, что вносит дополнительное затухание в 0,15 Нп на каждое скрещивание в схемах «трос – трос», не влияя на схему «два троса – земля». На передачах постоянного тока можно применять схему «трос – трос», так как здесь скрещивания не нужно.

Связь по грозозащитным тросам не прерывается при заземлении фазных проводов, не зависит от схемы коммутации линий.

Антенная связь применяется для присоединена к ВЛ передвижной ВЧ аппаратуры. Провод подвешивают вдоль проводов ВЛ или используют участок грозозащитного троса. Такой экономичный способ присоединения не нуждается в заградителях и конденсаторах связи.

Серия FOX предлагает современные решения на основе технологий первичных сетей SDH/PDH, спроектированные и испытанные для эксплуатации в жёстких условиях. Никакие другие мультиплексорные решения не обеспечивают такой широкий спектр специализированных продуктов - от телезащиты до гигабитного Ethernet с использованием технологии SDH и спектрального разделения.

Компания AББ уделяет особое внимание возможности модернизации продуктов для защиты капиталовложений и предлагает эффективные инструменты для технического обслуживания.

Комплексное коммуникационное решение серии FOX состоит из:

  • FOX505:Компактный мультиплексор доступа с пропускной способностью до STM-1.
  • FOX515/FOX615: Мультиплексор доступа с пропускной способностью до STM-4, обеспечивающий работу с широким диапазоном пользовательских интерфейсов для систем передачи данных и голоса. Реализация функций телезащиты и другие особенности, характерные для конкретной области применения, обеспечивают соблюдение всех требований по доступу к данным на предприятии.
  • FOX515H: Дополняет линейку FOX и предназначен для высокоскоростных линий связи.
  • FOX660: Мультисервисная платформа для систем передачи данных.

Все элементы серии FOX515 работают под управлением FOXMAN, унифицированной системы управления сетью компании ABB на основе SNMP. Ее открытая архитектура позволяет осуществлять интеграцию с системами управления сторонних поставщиков, как более высокого, так и более низкого уровня. Графическое отображение сети и управление по методу «указания и щелчка» делает систему FOXMAN идеальным решением для управления TDM и Ethernet на уровнях доступа и передачи данных.

Универсальная цифровая система ВЧ-связи ETL600 R4

ETL600 является современным решением вопроса обеспечения ВЧ-связи по ЛЭП для передачи речевых сигналов, данных и команд защиты по линиям высокого напряжения. Универсальная архитектура аппаратных и программных средств системы ETL600 делает беспредметным и устаревшим выбор между традиционным аналоговым и перспективным цифровым ВЧ-оборудованием. Используя те же самые аппаратные компоненты, пользователь может на месте выбрать цифровой или аналоговый рабочий режим посредством всего лишь нескольких нажатий клавиши мыши. В дополнение к удобству пользования, гибкости применения и беспрецедентной скорости передачи данных система ETL600 также гарантирует безусловную совместимость с существующей технологической средой и хорошо интегрируется в современные цифровые инфраструктуры связи.

Преимущества пользователя

  • Экономичное решение вопроса организации связи, обеспечивающее надежное управление и защиту энергосистемы.
  • Снижение затрат посредством общего резерва аппаратного оборудования и запасных частей для аналоговых и цифровых систем ВЧ-связи по ЛЭП.
  • Гибкая архитектура для легкой интеграции как в традиционное, так и в современное оборудование.
  • Надежная передача сигналов защиты
  • Эффективное использование ограниченных частотных ресурсов посредством гибкого выбора полосы передачи.
  • Резервное решение для выбранных критически-важных коммуникаций, которые обычно реализуются через широкополосные средства связи

Фильтр присоединения MCD80

Модульные устройства MCD80 применяются для соединения выводов устройства ВЧ связи, такого как AББ ETL600, через емкостной трансформатор напряжения к высоковольтным линиям.

Фильтр MCD80 обеспечивает оптимальное согласование импедансов для вывода линии ВЧ-связи, разделение частот и безопасную изоляцию частоты сети 50/60 Гц и переходных перенапряжений. Существует возможность конфигурирования для одно- и многофазной связи фильтрацией верхних частот или полосы пропускания. Устройства MCD80 соответствуют последним стандартам IEC и ANSI.

Основные преимущества фильтров MCD80:

  • Предназначены для работы с любыми типами аппаратуры ВЧ связи
  • Вся линейка фильтров: широкополосные, полосовые, разделительные, «фаза-фаза»Ю «фаза-земля»
  • Максимально возможный выбор полосы пропускания (по спецификации заказчика с шагом 1кГц)
  • Возможность присоединения, как к конденсаторам связи, так и трансформаторам напряжения
  • Широкий диапазон емкостей присоединения 1500пФ-20000пФ
  • Возможность перестройки на месте установки при изменении емкости присоединения в пределах рабочего диапазона емкостей (например, при замене конденсаторов на трансформаторы напряжения)
  • Низкое вносимое затухание в полосе пропускания (менее 1дБ)
  • Возможно параллельное подключение к одному ПФ до 9 терминалов мощностью 80 Вт по схеме фаза-земля и до 10 терминалов по схеме фаза-фаза
  • Встроенный однополюсный разъединитель (выключатель заземления)


ВЧ заградители для ВЛ-DLTC

Для защиты ВЧ-заградителей типа доступны два типа DLTC ограничителей перенапряжения.

Малые и среднеразмерные ВЧ-заградители оборудованы стандартными ограничителями перенапряжения AББ Polim-D без дуговых разрядников.

Крупные заградители оборудованы ограничителями ABB MVT, которые не имеют дугового разрядника и специально разработаны для использования с заградителями AББ. В них используются такие же чрезвычайно нелинейные металлооксидные варисторы (MO ограничители), что и в станционных ограничителях.

При проектировании блока настройки учитывается внутренняя утечка MO ограничителя. Металлооксидные ограничители перенапряжения AББ специально спроектированы для эксплуатации в сильных электромагнитных полях, которые часто присутствуют в ВЧ-заградителях линий связи по ЛЭП. В частности, они не содержат лишних металлических частей, в которых магнитное поле может индуцировать вихревые токи и вызвать недопустимое увеличение температуры. Модификация металлооксидных ограничителей перенапряжения для условий эксплуатации в заградителях на линиях ЛЭП была необходимой, так как компания AББ производит такие устройства для станций и полностью осведомлена о проблемах, которые возникают на практике. Ограничители перенапряжения, используемые в заградителях на линиях ЛЭП, имеют номинальный ток 10 кА.


Особенности и преимущества

Принципиальные преимущества ВЧ-заградителей линий ВЧ-связи типа DLTC

Информация с сайта

Страница 16 из 21

Конструкция линии электропередачи, определяемая ее главным назначением - передачей электрической энергии на расстояние, позволяет использовать ее для передачи информации. Высокий уровень эксплуатации и большая механическая прочность линий обеспечивают надежность каналов связи, близкую к надежности каналов по кабельным линиям связи. Вместе с тем при осуществлении по ВЛ каналов связи для передачи информации приходится учитывать особенности линий, затрудняющие их использование для целей связи. Такой особенностью является, например, наличие на концах линий оборудования подстанций, которое можно представить как цепь изменяющихся в широких пределах последовательно соединенных реактивного и активного сопротивления. Этими сопротивлениями через шины подстанций образуется связь между ВЛ, что приводит к увеличению тракта связи. Поэтому для снижения влияния между каналами и затухания с помощью специальных заградителей преграждают пути токам высокой частоты в сторону подстанций.
Значительно увеличивают затухание также ответвления от ВЛ. Эти и другие особенности линий требуют осуществления ряда мероприятий по созданию условий передачи информации.
Устройство ВЧ каналов по распределительным сетям 6-10 кВ сопряжено со значительными -трудностями из-за специфики построения сетей этих напряжений. На участках магистральных линий 6-10 к В между соседними коммутационными пунктами имеется большое число отпаек, линии секционируются разъединителями и выключателями, схемы первичной коммутации сетей нередко меняются, в том числе автоматически, из-за большей повреждаемости линий этих напряжений их надежность ниже, чем В71 35 кВ и выше. Передача сигналов в распределительных сетях зависит от многих факторов, влияющих на затухание сигнала: от длины и числа отпаек, материала проводов линии, нагрузки и др. Нагрузка может изменяться в широких пределах. При этом отключение отдельных отпаек, Как показывают исследования, иногда не только не уменьшает затухания, но, наоборот, из-за нарушения взаимной компенсации затуханий между соседними отпайками увеличивает ее. Поэтому каналы даже небольшой протяженности имеют значительное затухание и работают нестабильно. На работе каналов отрицательно сказываются также повреждения изоляторов, некачественное соединение проводов и неудовлетворительное состояние контактов коммутационной аппаратуры, Эти дефекты являются источниками помех, соизмеримых с уровнем передаваемого сигнала, что может вызывать прекращение работы канала и повреждение аппаратуры. Наличие на линиях секционирующих аппаратов приводит к полному прекращению работы ВЧ канала в случае их отключения и заземления одного из участков линии. Отмеченные недостатки существенно ограничивают, хотя и не исключают , использование линий 6-10 кВ для организации ВЧ каналов. И все-таки следует отметить, что широкого распространения ВЧ связь по распределительным сетям в настоящее время не получила.
По назначению ВЧ каналы связи по линиям электропередачи делятся на четыре группы: каналы диспетчерской связи, технологические, специальные и каналы линейно-эксплуатационной связи.
Не останавливаясь подробно на использовании и назначении каждой группы каналов, отметим, что для диспетчерских и технологические каналов телефонной связи используется в основном полоса тональных частот 300-3400 Гц <300-2300). Верхняя часть тонального спектра (2400-3400 Гц) не пользуется для передачи сигналов телеинформации. Современная комбинированная аппаратура позволяет организовать в этом спектре до четырех независимых узкополосных каналов телеииформации.
Каналы линейно-эксплуатационной связи служат для организации связи диспетчера с работающими на трассе протяженной линии электропередачи или подстанциях ремонтными бригадами, когда постоянной связи с ними нет. Для этих каналов применяется упрощенная перевозная и переносная телефонная аппаратура.
По степени сложности ВЧ каналы делятся на простые и сложные. Каналы, состоящие только из двух комплектов оконечной ВЧ аппаратуры, называют простыми. Сложные каналы имеют в своем составе промежуточные усилители или несколько комплектов оконечной аппаратуры (на одинаковых частотах).

Оборудование высокочастотных каналов связи по ВЛ.

Присоединение аппаратуры связи к проводам линии электропередачи осуществляется с помощью специальных устройств так называемой аппаратуры присоединения и обработки линии, состоящей из конденсатора связи, заградителя и элементов защиты.

Рис. 21. Схема высокочастотного канала связи по ВЛ
На рис. 21 изображена схема образования канала связи по ВЛ. Передача сигналов токами высокой частоты Осуществляется передатчиками аппаратуры уплотнения J, размещенными на обоих концах ВЛ на подстанциях А и В.
Здесь же в составе аппаратуры уплотнения 1 имеются приемники, осуществляющие прием модулированных токов ВЧ и их преобразование. Для обеспечения передачи энергии сигнала токами ВЧ по проводам достаточно обработать на каждом конце линии один провод с помощью заградителя 5, конденсатора связи 4 и фильтра присоединения 3, который соединяется с аппаратурой уплотнения 1 при помощи ВЧ кабеля 2. Для обеспечения безопасности работы персонала на фильтре присоединения при работающем ВЧ канале служит заземляющий нож 6.
Присоединение высокочастотной аппаратуры по схеме рис. 21 носит название фаза-земля. Такая схема может использоваться для образования одноканальных и многоканальных систем передачи информации. Применяются также другие схемы присоединения.
При необходимости подключения к линии электропередачи аппаратуры, установленной на трассе линии (телефонная передвижная аппаратура ремонтных бригад, аппаратура дистанционно управляемой УКВ радиостанции и т. п.), используются, как правило, антенные устройства присоединения. В качестве антенны применяются отрезки изолированного провода определенной длины или участки грозозащитного троса.
Высокочастотный (линейный) заградитель обладает высоким сопротивлением для рабочей частоты канала и служит для заграждения пути этим токам, уменьшая их утечку в сторону подстанции. При отсутствии заградителя затухание канала может увеличиться, так как небольшое входное сопротивление подстанции шунтирует ВЧ канал. Заградитель состоит из силовой катушки (реактора), элемента настройки и устройства защиты. Силовая катушка является основным элементом заградителя. Она должна выдерживать максимальные рабочие токи линии и токи КЗ. Силовая катушка изготовляется из свитых в спираль медных или алюминиевых проводов соответствующего сечения, намотанных на рейки из древесно-слоистого пластика (дельта-древесина) или стеклотекстолита. Концы реек закрепляются на металлических крестовинах. На верхней крестовине крепится элемент настройки с защитными разрядниками. Элемент настройки служит для получения относительно высокого сопротивления заградителя на одной или нескольких частотах или полосах частот.
Элемент настройки состоит из конденсаторов, катушек индуктивности и резисторов и включается параллельно
силовой катушке. Силовая катушка и элемент настройки заградителя подвергаются воздействиям при атмосферных и коммутационных перенапряжениях и КЗ. Роль защиты от перенапряжений, как правило, выполняет вентильный разрядник, состоящий из искрового промежутка и нелинейного вилитового резистора.
В электрических сетях 6-220 кВ нашли применение заградители ВЗ-600-0,25 и КЗ-500, а также заградители со стальным сердечником типов ВЧЗС-100 и ВЧЗС-100В, отличающиеся друг от друга номинальным током и индуктивностью, устойчивостью и геометрическими параметрами силовой катушки, а также типом элемента настройки и его защиты.
Заградители врезаются в фазный провод линии электропередачи между линейным разъединителем и конденсатором связи. Высокочастотные заградители могут монтироваться в подвесном виде, на опорных конструкциях, в том числе и на конденсаторах связи.
Конденсаторы связи служат для подключения ВЧ аппаратуры к воздушной линии, при этом токи утечки промышленной частоты отводятся через конденсатор связи на землю, минуя аппаратуру высокой частоты. Конденсаторы связи рассчитаны на фазное напряжение (в сети с заземленной нейтралью) и на линейное напряжение (в сети с изолированной нейтралью). В нашей стране выпускаются конденсаторы связи двух типов: СМР (связи, маслонаполненный, с расширителем) и СММ (связи, маслонаполненный, в металлическом корпусе). Для различных напряжений конденсаторы комплектуют из отдельных элементов, соединенных последовательно. Конденсаторы связи могут устанавливаться на железобетонные или металлические опоры высотой около 3 м. Для изоляции нижнего элемента конденсатора типа СМР от тела опоры используют специальные фарфоровые подставки круглого сечения.

Фильтр присоединения служит связующим звеном между конденсатором связи и ВЧ аппаратурой, разделяя линию высокого напряжения и установку слабого тока, каковой является аппаратура уплотнения. Фильтр присоединения обеспечивает тем самым безопасность персонала и защиту аппаратуры от высокого напряжения, так как при заземлении нижней обкладки конденсатора связи образуется путь для токов утечки промышленной частоты. С помощью фильтра присоединения осуществляется согласование волновых сопротивлений линии и высокочастотного кабеля, а также компенсации реактивного сопротивления конденсатора связи в заданной полосе частот. Фильтры присоединения выполняются по трансформаторной и автотрансформаторной схемам и вместе с конденсаторами связи образуют полосовые фильтры.
Наибольшее распространение в организации ВЧ каналов связи по линиям электропередачи предприятия получил фильтр присоединения типа ОФП-4 (см. рис. 19). Фильтр заключен в стальном сварном корпусе с проходным изолятором для присоединения конденсатора связи и кабельной воронкой для ввода ВЧ кабеля. На стенке корпуса крепится разрядник, имеющий удлиненную шпильку для подключения шинки заземления и предназначенный для защиты элементов фильтра присоединения от перенапряжений. Фильтр рассчитан для присоединения ВЧ аппаратуры по схеме фаза-земля в комплекте с конденсаторами связи емкостью 1100 и 2200 пФ. Фильтр устанавливается, как правило, на опоре конденсатора связи и крепится к опоре болтами на высоте 1,6-1,8 м от уровня земли.
Как отмечалось, все переключения в цепях фильтра присоединения производятся при включенном заземляющем ноже, который служит для заземления нижней обкладки конденсатора связи при работе персонала. В качестве заземляющего ножа применяется однополюсный разъединитель для напряжения 6-10 кВ. Операции с заземляющим ножом производятся с помощью изолирующей штанги. Некоторые типы фильтров присоединения имеют смонтированный внутри корпуса заземляющий нож. Для обеспечения безопасности в этом случае должен устанавливаться отдельно стоящий заземляющий нож.
Высокочастотный кабель служит для электрического соединения фильтра присоединения (см. рис. 21) с приемопередающей аппаратурой. При подключении аппаратуры к линии по схеме фаза - земля применяются коаксиальные кабели. Наиболее распространенным является высокочастотный коаксиальный кабель марки РК-75, внутренний проводник (одножильный или многожильный) которого отделен от внешней оплетки изоляцией из высокочастотного диэлектрика. Внешняя экранная оплетка служит обратным проводом. Внешний проводник заключен в защитную изолирующую оболочку.
Высокочастотные характеристики кабеля РК-75, как и обычных кабелей связи, определяются теми же параметрами: волновым сопротивлением, километрическим затуханием и скоростью распространения электромагнитных волн.
Надежную работу ВЧ каналов по ВЛ обеспечивают качественное и регулярное выполнение планово-профилактических работ, предусматривающих целый комплекс работ на оборудовании ВЧ каналов связи по ВЛ. Для выполнения профилактических измерений каналы выводятся из работы. В состав профилактического обслуживания входят плановые проверки аппаратуры и каналов, периодичность которых определяется состоянием аппаратуры, качеством эксплуатационного обслуживания с учетом профилактических работ и устанавливается не реже 1 раза в 3 года. Внеплановые проверки каналов выполняются при изменении ВЧ тракта, повреждений оборудования и при ненадежной работе канала из-за нарушения регламентированных параметров.

Аппаратура высокочастотной связи с цифровой обработкой сигналов (АВЦ) разработана фирмой “РАДИС Лтд”, г. Зеленоград (Москва) в соответствии с техническим заданием, утвержденным ЦДУ ЕЭС России*. АВЦ принята и рекомендована к производству межведомственной комиссией ОАО “ФСК ЕЭС” в июле 2003г, имеет сертификат Госстандарта России. Аппаратура производится фирмой “РАДИС Лтд” с 2004 г.
* В настоящее время ОАО “СО-ЦДУ ЕЭС”.

Назначение и возможности

АВЦ предназначена для организации 1, 2, 3 или 4-х каналов телефонной связи, телемеханической информации и передачи данных по ЛЭП 35-500 кВ между диспетчерским пунктом района или предприятия электрических сетей и подстанциями либо любыми объектами, необходимыми для диспетчерского и технологического управления в энергосистемах.

В каждом канале может быть организована телефонная связь с возможностью передачи в надтональном спектре телемеханической информации встроенными или внешними модемами либо передача данных с помощью встроенного или внешнего модема пользователя.

Модификации АВЦ

Совмещенный вариант

терминал АВЦ-С

Исполнение

В АВЦ широко используются методы и средства цифровой обработки сигналов, что позволяет обеспечить точность, стабильность, технологичность и высокую надежность аппаратуры. Входящие в состав АВЦ модулятор/демодулятор АМ ОБП, трансмультиплексор, адаптивные эквалайзеры, встроенные модемы телемеханики и служебные модемы сигналов управления выполнены с применением сигнальных процессоров, ПЛИС и микроконтроллеров, а телефонные автоматики и блок управления реализованы на базе микроконтроллеров. В качестве встроенного модема для передачи данных в канале используется модем STF/CF519C фирмы “Аналитик ”.

Технические характеристики

Число каналов 4, 3, 2 или 1
Диапазон рабочих частот 36-1000 кГц
Номинальная полоса частот одного направления передачи(приема):
- для одноканальной

4 кГц

- для двухканальной 8 кГц
- для трехканальной 12 кГц
16 кГц
Минимальный разнос частот между краями номинальных полос передачи и приема:
- для одно- и двухканальной 8 кГц
(в диапазоне до 500 кГц)
- для трехканальной 12 кГц
(в диапазоне до 500 кГц)
- для четырехканальной аппаратуры 16 кГц
(в диапазоне до 500 кГц)
- одно-, двух-, трех и четырехканальной аппаратуры 16 кГц
(в диапазоне
от 500 до 1000 кГц)
Максимальная пиковая мощность передатчика 40 Вт
Чувствительность приемника -25 дБм
Избирательность приемного тракта удовлетворяет требованиям МЭК 495
Диапазон регулировки АРУ в приемнике 40 дБ
Число встроенных модемов телемеханики (скорость 200, 600 бод) в каждом канале
- на скорость 200 Бод 2
- на скорость 600 Бод 1
Число подключаемых внешних модемов телемеханики в каждом канале Не более 2-х
Число встроенных модемов для передачи данных
(скорость до 24,4 кбит/c)
До 4-х
Число подключаемых внешних модемов для передачи данных До 4-х
Номинальное сопротивление для ВЧ-выхода
- неуравновешенного 75 Ом
- уравновешенного 150 Ом
Диапазон рабочих температур 0…+45°С
Питание 220 В,50 Гц

Примечание: при уравновешенном выходе средняя точка может соединяться с землей непосредственно или через резистор 75 Ом мощностью 10Вт.

Краткое описание

Терминал АВЦ-НЧ устанавливается на диспетчерском пункте, а АВЦ-ВЧ - на опорной или узловой подстанции. Связь между ними осуществляется по двум телефонным парам. Полосы частот, занимаемые каждым каналом связи:

Перекрываемое затухание между терминалами АВЦ-НЧ и АВЦ-ВЧ не более 20 дБ на максимальной частоте канала (характеристическое сопротивление линии связи 150 Ом).

Эффективная полоса пропускания каждого канала в АВЦ 0,3-3,4 кГц, причем она может быть использована:

Сигналы телемеханики передаются с помощью встроенных модемов (два на скорость 200 Бод, средние частоты 2,72 и 3,22 кГц или один на скорость 600 Бод, средняя частота 3 кГц) или внешних модемов пользователя.
Передача данных осуществляется с помощью встроенного модема STF/CF519C (в зависимости от параметров линии скорость может достигать 24,4 кбит/с) или внешнего модема пользователя. Это дает возможность организации до 4 каналов межмашинного обмена.
В тракте приема АВЦ-НЧ (АВЦ-С) предусмотрена полуавтоматическая коррекция частотной характеристики остаточного затухания каждого канала.
В каждом телефонном канале АВЦ имеется возможность включения компандера.


Ячейка телефонной автоматики

АВЦ-НЧ (АВЦ-С) содержит встроенные устройства автоматического соединения абонентов (телефонные автоматики), которые позволяют подключение:

Если канал используется для передачи данных, то ячейка телефонной автоматики заменяется ячейкой встроенных модемов STF/CF519C.


Ячейка модемов STF/CF519C

В АВЦ-НЧ и АВЦ-С имеется блок управления, который с помощью служебного модема каждого канала (скорость передачи 100 Бод, средняя частота 3,6 кГц) осуществляет передачу команд и непрерывный контроль наличия связи между местным и удаленным терминалами. При пропадании связи обеспечивается выдача звукового сигнала и замыкание контактов реле внешней сигнализации. В энергонезависимой памяти блока ведется журнал событий (включение/выключение и готовность аппаратуры, “пропадание” канала связи и т.п.) на 512 записей.

Необходимые режимы АВЦ устанавливаются при помощи выносного пульта управления или внешнего компьютера, подключаемого через интерфейс RS-232 к блоку управления. Пульт позволяет снять диаграмму уровней и характеристики остаточного затухания канала, выполнить необходимую коррекцию частотной характеристики и оценить уровень характеристических искажений встроенных модемов телемеханики.

Рабочая частота аппаратуры может быть перестроена пользователем в пределах одного из поддиапазонов: 36-125, 125-500 и 500-1000 кГц. Шаг перестройки - 1 кГц.

Схемы организации каналов связи

Помимо прямого канала связи (“точка-точка”) между полукомплектами АВЦ возможны более сложные схемы организации каналов связи (типа “звезда”). Так, двухканальный диспетчерский полукомплект позволяет организовать связь с двумя одноканальными полукомплектами, установленными в контролируемых пунктах, а четырехканальный - с двумя двухканальными или четырьмя одноканальными полукомплектами.

Возможны и другие подобные конфигурации каналов связи. C помощью дополнительного терминала АВЦ-ВЧ аппаратура обеспечивает организацию четырехпроводного переприема без отбора каналов.

Кроме того, могут быть предоставлены следующие возможности:

С помощью лишь терминала АВЦ-ВЧ организуется работа совместно с внешним модемом, имеющим полосу 4, 8, 12 или 16 кГц в диапазоне номинальных частот от 0 до 80 кГц, что позволяет создавать комплексы цифровой высокочастотной связи. Например, на базе терминала АВЦ-ВЧ и модемов М-АСП-ПГ-ЛЭП фирмы "Зелакс " можно организовать связь со скоростью передачи данных до 80 кбит/с в полосе 12 кГц и до 24 кбит/с в полосе 4 кГц.

В номинальной полосе 16 кГц в АВЦ организуются два канала, а именно 1-й с полосой 4 кГц для телефонной связи и 2-й с полосой 12 кГц для передачи данных аппаратурой пользователя.

Организуется работа до четырех одноканальных абонентских полукомплектов АВЦ на контролируемых пунктах с одноканальным диспетчерским полукомплектом АВЦ. При полосе телефонного канала 0,3-2,4 кГц аппаратура предоставит по одному дуплексному каналу связи для обмена телемеханической информацией со скоростью 100 Бод между диспетчерским и каждым полукомплектом на контролируемом пункте. При использовании внешних модемов со скоростью больше 100 Бод возможен только циклический или спорадический обмен телемеханической информацией между диспетчерским и абонентским полукомплектами.

Массогабаритные параметры аппаратуры

Наименование

Глубина, мм

Высота, мм

Установка

Аппаратура может быть установлена на стеллаже (до нескольких вертикальных рядов), в 19” стойке или закреплена на стене. Все кабели для внешних соединений подключаются спереди. По отдельному заказу поставляется промежуточный клеммник для подключения кабелей.

Условия окружающей среды

АВЦ предназначена для непрерывной круглосуточной работы в стационарных условиях, в закрытых помещениях без постоянного обслуживающего персонала при температуре от 0 до +45С О и относительной влажности вплоть до 85%. Работоспособность аппаратуры сохраняется при температуре окружающей среды до -25С О.



Цифровая система ВЧ связи MC04−PLC предназначена для организации каналов телемеханики (ТМ), передачи данных (ПД) и телефонных каналов (ТФ) по высоковольтным линиям электропередач (ЛЭП) распределительной сети 35/110 кВ. Аппаратура обеспечивает передачу данных по высокочастотному (ВЧ) каналу связи в полосе 4/8/12 кГц в диапазоне частот 16-1000 кГц. Присоединение к ЛЭП производится по схеме фаза - земля через конденсатор связи и фильтр присоединения. Подключение ВЧ окончания аппаратуры к фильтру присоединения несимметричное и выполняется одним коаксиальным кабелем.

Аппаратура изготавливается с разнесенным и смежным расположением полос пропускания направлений приема и передачи.


Функциональные возможности:

Количество ВЧ каналов шириной 4 кГц - до 3-х;
режим каналов: аналоговый (частотное разделение) и цифровой (временное разделение);
модуляция низкочастотного цифрового потока ‒ QAM с разделением на 88 поднесущих OFDM;
модуляция ВЧ спектра - амплитудная с передачей одной боковой полосы частот АМ ОБП;
адаптация битовой скорости цифрового потока (ЦП) к изменяющемуся отношению сигнал/шум;
интерфейсы телефонии: 4‒х проводные 4W, 2‒проводные FXS/FXO;
количество каналов телефонии в каждом ВЧ канале - до 3-х;
преобразование сигнализации АДАСЭ в абонентскую сигнализацию FXS/FXO;
диспетчерское и абонентское соединение по протоколу АДАСЭ по одному каналу ТФ;
цифровые интерфейсы ТМ и передачи данных: RS232, RS485, Ethernet;
интерфейс управления и мониторинга - Ethernet;
встроенный анализатор уровней передачи/приема ВЧ тракта, измеритель ошибок, температуры.
регистрация неисправностей и сигнализации в энергонезависимой памяти;
цифровой переприем ‒ транзит каналов на промежуточных подстанциях без потерь качества;
мониторинг ‒ программа MC04‒Monitor: конфигурация, настройка, диагностика;
удаленный мониторинг и конфигурирование через встроенный в ВЧ канал обслуживания;
поддержка SNMP ‒ при оснащении сетевым модулем S‒port;
радиальные и древовидные схемы мониторинга удаленных полукомплектов;
электропитание: сеть ~220 В/50 Гц или постоянное напряжение 48/60 В.

Основные параметры
Рабочий диапазон частот 16 – 1000 кГц
Ширина рабочей полосы 4/8/12 кГц
Номинальная пиковая мощность огибающей ВЧ сигнала 20/40 Вт
Максимальная скорость передачи ЦП в полосе 4 кГц (адаптивно) 23,3 кбит/с
Глубина регулировки АРУ при коэффициенте ошибок не более 10–6 не менее 40 дБ.
Допустимое затухание линии (с учетом помех) 50 дБ


Потребляемая мощность от сети питания 220 В или 48 В – не более 100 Вт.
Габаритные размеры блока − 485*135*215мм.
Вес не более 5 кг.


Условия эксплуатации:

− температура окружающего воздуха от +1 до + 45°С;
− относительная влажность воздуха до 80 % при температуре плюс 25°С;
− атмосферное давление не ниже 60 кПа (450 мм рт. ст.).

Конструкция и состав аппаратуры:


Цифровая трехканальная система ВЧ связи MC04−PLC включает два блока 19 дюймов высотой 3U, в которые устанавливаются следующие функционально–конструктивные узлы (платы):
ИП01− блок питания, сетевой вход 220В/50Гц, выход +48В,−48В,+12В;
ИП02− блок питания, вход 36…72В, выход +48В,−48В,+12В;
МП02− мультиплексор каналов ТМ, ПД, ТФ, кодек G.729, цифровой эхокомпенсатор;
МД02− модуляция/демодуляция ЦП в аналоговый ВЧ сигнал, мониторинг и управление;
ФПРМ − линейный трансформатор, аттенюатор и 4−х контурный фильтр ПРМ, усилитель ПРМ;
ФПРД – 1/2−х контурный фильтр ПРД, высокоомный импеданс вне полосы ПРД;
УМ02− усилитель мощности, цифровая индикация уровней ПРД, индикация аварий.
ТР01 − транзит содержимого ВЧ канала между блоками, устанавливается на место плат МП02.

Информация для заказа

Количество плат МП02 соответствует количеству базовых ВЧ каналов с полосой 4 кГц, конфигурируемых на плате МД02 − от 1 до 3. В случае транзита одного из ВЧ каналов между блоками на промежуточной подстанции на место платы МП02 устанавливается плата транзита ТР01, обеспечивающая прием/передачу содержимого ВЧ канала без преобразования в аналоговую форму.
Блок имеет два основных исполнения по пиковой мощности огибающей ВЧ сигнала:
1P − установлен один усилитель УМ02 и один фильтр ФПРД, мощность ВЧ сигнала – 20 Вт;
2P − установлены два усилителя УМ02 и два фильтра ФПРД, мощность ВЧ сигнала – 40 Вт.

Обозначение блока включает:
– количество задействованных ВЧ каналов 1/2/3;
– исполнение по пиковой мощности огибающей ВЧ сигнала: 1P – 20 Вт или 2P – 40 Вт;
– типы пользовательских стыков каждого из 3‒х ВЧ каналов / плат МП‒02 или плата ТР01;
– напряжение питания блока ‒ сеть ~220 В или постоянное напряжение 48 В.
На плате МП–02 по умолчанию имеются цифровые интерфейсы RS232 и Ethernet, которые в обозначении блока не указываются.